These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8326448)

  • 81. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism.
    Buckley JG; Spence WD; Solomonidis SE
    Arch Phys Med Rehabil; 1997 Mar; 78(3):330-3. PubMed ID: 9084360
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Walking in visually handicapped children and its energy cost.
    Bunc V; Segetova J; Safarikova L
    Ergonomics; 2000 Oct; 43(10):1571-7. PubMed ID: 11083137
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Effects of worn-out soles on lower limb stability, shock absorption and energy cost during prolonged walking.
    Saito S; Muraki S; Tochihara Y
    J Physiol Anthropol; 2007 Sep; 26(5):521-6. PubMed ID: 18092507
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Effects of Right Lower Limb Orthopedic Immobilization on Braking Function: An On-The-Road Experimental Study With Healthy Volunteers.
    Murray JC; Tremblay MA; Corriveau H; Hamel M; Cabana F
    J Foot Ankle Surg; 2015; 54(4):554-8. PubMed ID: 25435008
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Increased energy cost of walking in multiple sclerosis: effect of spasticity, ataxia, and weakness.
    Olgiati R; Burgunder JM; Mumenthaler M
    Arch Phys Med Rehabil; 1988 Oct; 69(10):846-9. PubMed ID: 3178452
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Energetics of vertical kilometer foot races; is steeper cheaper?
    Giovanelli N; Ortiz AL; Henninger K; Kram R
    J Appl Physiol (1985); 2016 Feb; 120(3):370-5. PubMed ID: 26607247
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Energy consumption and cost during walking with different modalities of assistance after stroke: a systematic review and meta-analysis.
    Lefeber N; De Buyzer S; Dassen N; De Keersmaecker E; Kerckhofs E; Swinnen E
    Disabil Rehabil; 2020 Jun; 42(12):1650-1666. PubMed ID: 30668170
    [No Abstract]   [Full Text] [Related]  

  • 88. The evaluation of energy cost of effort and changes of centre of mass (COM) during race walking at starting speed after improving the length of lower extremities.
    Klimek A; ChwaƂa W
    Acta Bioeng Biomech; 2007; 9(2):55-60. PubMed ID: 18421944
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Exercise moderation of foot function during walking with a re-usable semirigid ankle orthosis.
    Hamill J; Morin G; Clarkson PM; Andres RO
    Clin Biomech (Bristol, Avon); 1988 Aug; 3(3):153-8. PubMed ID: 23915892
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effects of orthopaedic immobilization of the right lower limb on driving performance: an experimental study during simulated driving by healthy volunteers.
    Tremblay MA; Corriveau H; Boissy P; Smeesters C; Hamel M; Murray JC; Cabana F
    J Bone Joint Surg Am; 2009 Dec; 91(12):2860-6. PubMed ID: 19952248
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Confidence in the curve: Establishing instantaneous cost mapping techniques using bilateral ankle exoskeletons.
    Koller JR; Gates DH; Ferris DP; Remy CD
    J Appl Physiol (1985); 2017 Feb; 122(2):242-252. PubMed ID: 27856717
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Energy cost of ambulation in paraplegic patients using Craig-Scott braces.
    Huang CT; Kuhlemeier KV; Moore NB; Fine PR
    Arch Phys Med Rehabil; 1979 Dec; 60(12):595-600. PubMed ID: 518268
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effect of Rocker Soled Shoe Design on Walking Economy in Females with Pes Planus.
    Dhyani M; Singla D; Ahmad I; Hussain ME; Ali K; Verma S
    J Clin Diagn Res; 2017 Sep; 11(9):YC01-YC04. PubMed ID: 29207819
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Ankle fixation need not increase the energetic cost of human walking.
    Vanderpool MT; Collins SH; Kuo AD
    Gait Posture; 2008 Oct; 28(3):427-33. PubMed ID: 18359634
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sensitivity analysis and comparison of two methods of using heart rate to represent energy expenditure during walking.
    Karimi MT
    Work; 2015; 51(4):799-805. PubMed ID: 24594537
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The impact of foot insole on the energy consumption of flat-footed individuals during walking.
    Karimi MT; Fereshtehnejad N; Pool F
    Foot Ankle Spec; 2013 Feb; 6(1):21-6. PubMed ID: 22956661
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Energy demands for walking in dysvascular amputees as related to the level of amputation.
    Pinzur MS; Gold J; Schwartz D; Gross N
    Orthopedics; 1992 Sep; 15(9):1033-6; discussion 1036-7. PubMed ID: 1437862
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cost of walking and locomotor impairment.
    Bernardi M; Macaluso A; Sproviero E; Castellano V; Coratella D; Felici F; Rodio A; Piacentini MF; Marchetti M; Ditunno JF
    J Electromyogr Kinesiol; 1999 Apr; 9(2):149-57. PubMed ID: 10098715
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of running on volume of the foot and ankle.
    Cloughley WB; Mawdsley RH
    J Orthop Sports Phys Ther; 1995 Oct; 22(4):151-4. PubMed ID: 8535472
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A reassessment of center-of-mass dynamics as a determinate of the metabolic inefficiency of above-knee amputee ambulation.
    Gitter A; Czerniecki J; Weaver K
    Am J Phys Med Rehabil; 1995; 74(5):332-8. PubMed ID: 7576408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.