These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8326456)

  • 1. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states.
    Ansari B; Coates PJ; Greenstein BD; Hall PA
    J Pathol; 1993 May; 170(1):1-8. PubMed ID: 8326456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for detecting apoptosis shows that hepatocytes undergo a time dependent increase in DNA cleavage and chromatin condensation which is augmented after TGF-beta 1 treatment.
    Cain K; Inayat-Hussain SH; Couet C; Qin HM; Oberhammer FA
    Cytometry; 1996 Apr; 23(4):312-21. PubMed ID: 8900474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques.
    Gold R; Schmied M; Giegerich G; Breitschopf H; Hartung HP; Toyka KV; Lassmann H
    Lab Invest; 1994 Aug; 71(2):219-25. PubMed ID: 8078301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-embedding immunogold labeling of TUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterations in individual cells of neuronal tissue.
    Barth M; Oulmi Y; Ehrenreich H; Schilling L
    Acta Neuropathol; 2002 Dec; 104(6):621-36. PubMed ID: 12410384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of formalin fixation on the detection of apoptosis in human brain by in situ end-labelling of DNA.
    Davison FD; Groves M; Scaravilli F
    Histochem J; 1995 Dec; 27(12):983-8. PubMed ID: 8789399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers.
    Hughes J; Gobe G
    Nephrology (Carlton); 2007 Oct; 12(5):452-8. PubMed ID: 17803468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of apoptotic testicular germ cells in normal and methoxyacetic acid-treated mice as determined by flow cytometry.
    Krishnamurthy H; Weinbauer GF; Aslam H; Yeung CH; Nieschlag E
    J Androl; 1998; 19(6):710-7. PubMed ID: 9876022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples.
    Høst E; Lindenberg S; Kahn JA; Christensen F
    Acta Obstet Gynecol Scand; 1999 Apr; 78(4):336-9. PubMed ID: 10203303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of three-dimensional distribution of apoptotic DNA damage by combination of TUNEL and quick-freezing and deep-etching techniques.
    Ohno S; Baba T; Terada N; Fujii Y
    Methods Mol Biol; 2002; 203():55-68. PubMed ID: 12073454
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of apoptosis in normal ontogenesis and solid human neoplasms.
    Kaiser HE; Bodey B
    In Vivo; 2000; 14(6):789-803. PubMed ID: 11204498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis.
    Charriaut-Marlangue C; Margaill I; Represa A; Popovici T; Plotkine M; Ben-Ari Y
    J Cereb Blood Flow Metab; 1996 Mar; 16(2):186-94. PubMed ID: 8594049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorometric assay for quantitating DNA strand breaks during apoptosis.
    Patel T; Arora A; Gores GJ
    Anal Biochem; 1995 Aug; 229(2):229-35. PubMed ID: 7485977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of interleukin 1-induced apoptosis in rat islets using in situ specific labelling of fragmented DNA.
    Dunger A; Augstein P; Schmidt S; Fischer U
    J Autoimmun; 1996 Jun; 9(3):309-13. PubMed ID: 8816965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Specific in situ labeling of apoptosis shows different rates of programmed cell death in non-Hodgkin lymphomas].
    Funk A; Rudel J; Fellbaum C; Höfler H
    Verh Dtsch Ges Pathol; 1994; 78():318-20. PubMed ID: 7887032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo.
    Ikegami R; Hunter P; Yager TD
    Dev Biol; 1999 May; 209(2):409-33. PubMed ID: 10328930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of prefixation and fixation times on apoptosis detection by in situ end-labeling of fragmented DNA.
    Tateyama H; Tada T; Hattori H; Murase T; Li WX; Eimoto T
    Arch Pathol Lab Med; 1998 Mar; 122(3):252-5. PubMed ID: 9823863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of apoptosis using in situ markers for DNA strand breaks in the failing human heart. Fact or epiphenomenon?
    Hughes SE
    J Pathol; 2003 Oct; 201(2):181-6. PubMed ID: 14517834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage and p21(WAF1/CIP1/SDI1) in experimental injury of the rat adrenal cortex and trauma-associated damage of the human adrenal cortex.
    Didenko VV; Wang X; Yang L; Hornsby PJ
    J Pathol; 1999 Sep; 189(1):119-26. PubMed ID: 10451498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgen influence on lacrimal gland apoptosis, necrosis, and lymphocytic infiltration.
    Azzarolo AM; Wood RL; Mircheff AK; Richters A; Olsen E; Berkowitz M; Bachmann M; Huang ZM; Zolfagari R; Warren DW
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):592-602. PubMed ID: 10067962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of a calcium channel blocker on apoptosis in thymus of neonatal STZ-diabetic rats.
    Kaya Dağistanli F; Süsleyici Duman B; Oztürk M
    Acta Histochem; 2005; 107(3):207-14. PubMed ID: 15964614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.