These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8326763)

  • 1. In vitro comparison of different signal processing algorithms used in laser Doppler flowmetry.
    Obeid AN
    Med Biol Eng Comput; 1993 Jan; 31(1):43-52. PubMed ID: 8326763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive processing bandwidth adjustment for laser Doppler flowmetry.
    Chen YY; Lin YH; Jan IC; Liu RS; Chou NK; Jan GJ
    Med Biol Eng Comput; 2004 May; 42(3):277-81. PubMed ID: 15191070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral analysis of laser Doppler signals in real time using digital processing.
    Dougherty G
    Med Eng Phys; 1994 Jan; 16(1):35-8. PubMed ID: 8162263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized fractal dimensions of laser Doppler flowmetry signals recorded from glabrous and nonglabrous skin.
    Buard B; Mahé G; Chapeau-Blondeau F; Rousseau D; Abraham P; Humeau A
    Med Phys; 2010 Jun; 37(6):2827-36. PubMed ID: 20632594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new single-fibre laser Doppler flowmeter based on digital signal processing.
    Cai H; Pettersson H; Rohman H; Larsson SE; Oberg PA
    Med Eng Phys; 1996 Oct; 18(7):523-8. PubMed ID: 8892236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal processing methodology to study the cutaneous vasodilator response to a local external pressure application detected by laser Doppler flowmetry.
    Humeau A; Fizanne L; Garry A; Saumet JL; L'Huillier JP
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):190-2. PubMed ID: 14723510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for digital signal processing based laser-Doppler flowmetry.
    Greitans M; Mikelsons A; Möller KO
    Technol Health Care; 1999; 7(2-3):125-35. PubMed ID: 10463302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducibility of LDF blood flow measurements: dynamical characterization versus averaging.
    Stefanovska A; Sheppard LW; Stankovski T; McClintock PV
    Microvasc Res; 2011 Nov; 82(3):274-6. PubMed ID: 21907217
    [No Abstract]   [Full Text] [Related]  

  • 9. Physiological effects of indomethacin and celecobix: an S-transform laser Doppler flowmetry signal analysis.
    Assous S; Humeau A; Tartas M; Abraham P; L'Huillier JP
    Phys Med Biol; 2005 May; 50(9):1951-9. PubMed ID: 15843729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of transient signal high-values in laser Doppler flowmetry signals with an empirical mode decomposition.
    Humeau A; Trzepizur W; Rousseau D; Chapeau-Blondeau F; Abraham P
    Med Phys; 2009 Jan; 36(1):18-21. PubMed ID: 19235369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood perfusion values of laser speckle contrast imaging and laser Doppler flowmetry: is a direct comparison possible?
    Binzoni T; Humeau-Heurtier A; Abraham P; Mahe G
    IEEE Trans Biomed Eng; 2013 May; 60(5):1259-65. PubMed ID: 23232361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of laser Doppler perfusion imaging in vitro and in vivo.
    Kernick DP; Shore AC
    Physiol Meas; 2000 May; 21(2):333-40. PubMed ID: 10847199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a velocity-resolved microvascular blood flow measure by decomposition of the laser Doppler spectrum.
    Larsson M; Strömberg T
    J Biomed Opt; 2006; 11(1):014024. PubMed ID: 16526901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of optical properties and fiber separation on laser doppler flowmetry.
    Larsson M; Steenbergen W; Strömberg T
    J Biomed Opt; 2002 Apr; 7(2):236-43. PubMed ID: 11966309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of laser speckle contrast images variability using a novel empirical mode decomposition: comparison of results with laser Doppler flowmetry signals variability.
    Humeau-Heurtier A; Abraham P; Mahe G
    IEEE Trans Med Imaging; 2015 Feb; 34(2):618-27. PubMed ID: 25347875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced endothelial activity reflected in cutaneous blood flow oscillations of athletes.
    Kvernmo HD; Stefanovska A; Kirkebøen KA
    Eur J Appl Physiol; 2003 Sep; 90(1-2):16-22. PubMed ID: 12783233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcirculation assessment using an individualized model for diffuse reflectance spectroscopy and conventional laser Doppler flowmetry.
    Strömberg T; Karlsson H; Fredriksson I; Nyström FH; Larsson M
    J Biomed Opt; 2014 May; 19(5):057002. PubMed ID: 24788373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between Hilbert-Huang transform and scalogram methods on non-stationary biomedical signals: application to laser Doppler flowmetry recordings.
    Roulier R; Humeau A; Flatley TP; Abraham P
    Phys Med Biol; 2005 Nov; 50(21):5189-202. PubMed ID: 16237249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions in skin blood flow fractal scaling: the importance of fluctuation amplitude in microcirculation.
    Esen H; Ata N; Esen F
    Microvasc Res; 2015 Jan; 97():6-12. PubMed ID: 25241251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An explanation for the effectiveness of the 'Draijer' algorithm for high speed laser Doppler perfusion imaging.
    Crowe JA; Carpenter J; Hopcraft K
    Med Biol Eng Comput; 2012 Mar; 50(3):211-4. PubMed ID: 22327845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.