These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transaldolase mutants in the yeast Kluyveromyces lactis provide evidence that glucose can be metabolized through the pentose phosphate pathway. Jacoby J; Hollenberg CP; Heinisch JJ Mol Microbiol; 1993 Nov; 10(4):867-76. PubMed ID: 7934848 [TBL] [Abstract][Full Text] [Related]
3. Genetic and biochemical characterization of phosphofructokinase from the opportunistic pathogenic yeast Candida albicans. Lorberg A; Kirchrath L; Ernst JF; Heinisch JJ Eur J Biochem; 1999 Feb; 260(1):217-26. PubMed ID: 10091602 [TBL] [Abstract][Full Text] [Related]
4. Gal80 proteins of Kluyveromyces lactis and Saccharomyces cerevisiae are highly conserved but contribute differently to glucose repression of the galactose regulon. Zenke FT; Zachariae W; Lunkes A; Breunig KD Mol Cell Biol; 1993 Dec; 13(12):7566-76. PubMed ID: 8246973 [TBL] [Abstract][Full Text] [Related]
5. Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Luyten K; de Koning W; Tesseur I; Ruiz MC; Ramos J; Cobbaert P; Thevelein JM; Hohmann S Eur J Biochem; 1993 Oct; 217(2):701-13. PubMed ID: 8223613 [TBL] [Abstract][Full Text] [Related]
6. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation. López ML; Redruello B; Valdés E; Moreno F; Heinisch JJ; Rodicio R Curr Genet; 2004 Jan; 44(6):305-16. PubMed ID: 14569415 [TBL] [Abstract][Full Text] [Related]
7. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed. Toikkanen JH; Sundqvist L; Keränen S Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305 [TBL] [Abstract][Full Text] [Related]
8. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Goffrini P; Wésolowski-Louvel M; Ferrero I Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011 [TBL] [Abstract][Full Text] [Related]
9. KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis. Rodicio R; Koch S; Schmitz HP; Heinisch JJ Microbiology (Reading); 2006 Sep; 152(Pt 9):2635-2649. PubMed ID: 16946259 [TBL] [Abstract][Full Text] [Related]
10. The phosphofructokinase genes of yeast evolved from two duplication events. Heinisch J; Ritzel RG; von Borstel RC; Aguilera A; Rodicio R; Zimmermann FK Gene; 1989 May; 78(2):309-21. PubMed ID: 2528496 [TBL] [Abstract][Full Text] [Related]
11. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis. Shain DH; Salvadore C; Denis CL Mol Gen Genet; 1992 Apr; 232(3):479-88. PubMed ID: 1588917 [TBL] [Abstract][Full Text] [Related]
12. Functional complementation of yeast phosphofructokinase mutants by the non-allosteric enzyme from Dictyostelium discoideum. Estévez AM; Heinisch JJ; Aragón JJ FEBS Lett; 1995 Oct; 374(1):100-4. PubMed ID: 7589492 [TBL] [Abstract][Full Text] [Related]
13. Cloning and characterization of the Kluyveromyces lactis homologs of the Saccharomyces cerevisiae RED1 and HOP1 genes. Smith AV; Roeder GS Chromosoma; 2000; 109(1-2):50-61. PubMed ID: 10855495 [TBL] [Abstract][Full Text] [Related]
14. Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis. Zaror I; Marcus F; Moyer DL; Tung J; Shuster JR Eur J Biochem; 1993 Feb; 212(1):193-9. PubMed ID: 8383039 [TBL] [Abstract][Full Text] [Related]
15. Identification and functional analysis of a Kluyveromyces lactis homologue of the SPT4 gene of Saccharomyces cerevisiae. Hikkel I; Gbelská Y; Subík J Curr Genet; 1998 Dec; 34(5):375-8. PubMed ID: 9871119 [TBL] [Abstract][Full Text] [Related]
16. Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. Kirchrath L; Lorberg A; Schmitz HP; Gengenbacher U; Heinisch JJ J Mol Biol; 2000 Jul; 300(4):743-58. PubMed ID: 10891267 [TBL] [Abstract][Full Text] [Related]
17. Cloning, sequencing and disruption of the ARG8 gene encoding acetylornithine aminotransferase in the petite-negative yeast Kluyveromyces lactis. Janssen A; Chen XJ Yeast; 1998 Feb; 14(3):281-5. PubMed ID: 9544247 [TBL] [Abstract][Full Text] [Related]
18. Construction and physiological characterization of mutants disrupted in the phosphofructokinase genes of Saccharomyces cerevisiae. Heinisch J Curr Genet; 1986; 11(3):227-34. PubMed ID: 2965996 [TBL] [Abstract][Full Text] [Related]
19. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis. Georis I; Krijger JJ; Breunig KD; Vandenhaute J Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849 [TBL] [Abstract][Full Text] [Related]
20. The UDPase activity of the Kluyveromyces lactis Golgi GDPase has a role in uridine nucleotide sugar transport into Golgi vesicles. Lopez-Avalos MD; Uccelletti D; Abeijon C; Hirschberg CB Glycobiology; 2001 May; 11(5):413-22. PubMed ID: 11425802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]