BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 8327467)

  • 21. Animal models for prion-like diseases.
    Fernández-Borges N; Eraña H; Venegas V; Elezgarai SR; Harrathi C; Castilla J
    Virus Res; 2015 Sep; 207():5-24. PubMed ID: 25907990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of amyloid fibril-forming proteins.
    Kallberg Y; Gustafsson M; Persson B; Thyberg J; Johansson J
    J Biol Chem; 2001 Apr; 276(16):12945-50. PubMed ID: 11134035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recombinant human prion protein fragment 90-231, a useful model to study prion neurotoxicity.
    Corsaro A; Thellung S; Villa V; Nizzari M; Aceto A; Florio T
    OMICS; 2012; 16(1-2):50-9. PubMed ID: 22321015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the sequence-dependent species barrier between hamster and mouse prions.
    Lee LY; Chen RP
    J Am Chem Soc; 2007 Feb; 129(6):1644-52. PubMed ID: 17243682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange.
    Lu X; Wintrode PL; Surewicz WK
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1510-5. PubMed ID: 17242357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein misfolding cyclic amplification (PMCA): Current status and future directions.
    Saá P; Cervenakova L
    Virus Res; 2015 Sep; 207():47-61. PubMed ID: 25445341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure.
    Wan W; Stöhr J; Kendall A; Stubbs G
    Prion; 2015; 9(5):333-8. PubMed ID: 26325658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins.
    Eraña H; Venegas V; Moreno J; Castilla J
    Biochem Biophys Res Commun; 2017 Feb; 483(4):1125-1136. PubMed ID: 27590581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alzheimer disease and the prion disorders amyloid beta-protein and prion protein amyloidoses.
    Price DL; Borchelt DR; Sisodia SS
    Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6381-4. PubMed ID: 8101988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulations of amyloid fibrils: an in silico approach.
    Ye W; Wang W; Jiang C; Yu Q; Chen H
    Acta Biochim Biophys Sin (Shanghai); 2013 Jun; 45(6):503-8. PubMed ID: 23532062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent.
    Nandi PK; Nicole JC
    J Mol Biol; 2004 Nov; 344(3):827-37. PubMed ID: 15533448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prion protein interconversions.
    Caughey B
    Philos Trans R Soc Lond B Biol Sci; 2001 Feb; 356(1406):197-200; discussion 200-2. PubMed ID: 11260800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seeding and cross-seeding fibrillation of N-terminal prion protein peptides PrP(120-144).
    Wang Y; Hall CK
    Protein Sci; 2018 Jul; 27(7):1304-1313. PubMed ID: 29637634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The allure and pitfalls of the prion-like aggregation in neurodegeneration.
    Ezzat K; Espay AJ
    Handb Clin Neurol; 2023; 193():17-22. PubMed ID: 36803809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.
    Honda R
    Angew Chem Int Ed Engl; 2018 May; 57(21):6086-6089. PubMed ID: 29645399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the cross-beta spine of amyloid-like fibrils.
    Nelson R; Sawaya MR; Balbirnie M; Madsen AØ; Riekel C; Grothe R; Eisenberg D
    Nature; 2005 Jun; 435(7043):773-8. PubMed ID: 15944695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro.
    Tagliavini F; Prelli F; Verga L; Giaccone G; Sarma R; Gorevic P; Ghetti B; Passerini F; Ghibaudi E; Forloni G
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9678-82. PubMed ID: 8105481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of mutations associated with familial prion-related encephalopathies on biological activity of prion protein peptides.
    Forloni G; Angeretti N; Malesani P; Peressini E; Rodriguez Martin T; Della Torre P; Salmona M
    Ann Neurol; 1999 Apr; 45(4):489-94. PubMed ID: 10211473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.