BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8327791)

  • 41. Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps.
    Richardson RS; Grassi B; Gavin TP; Haseler LJ; Tagore K; Roca J; Wagner PD
    J Appl Physiol (1985); 1999 Mar; 86(3):1048-53. PubMed ID: 10066722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen ion concentration and oxygen uptake in an isolated canine hindlimb.
    Harken AH
    J Appl Physiol; 1976 Jan; 40(1):1-5. PubMed ID: 2574
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of intracellular PO2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle.
    Honig CR; Gayeski TE
    Adv Exp Med Biol; 1987; 215():309-21. PubMed ID: 3673731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Resistance to O2 diffusion in anemic red muscle: roles of flux density and cell PO2.
    Honig CR; Gayeski TE
    Am J Physiol; 1993 Sep; 265(3 Pt 2):H868-75. PubMed ID: 8214121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery.
    Boushel R; Ara I; Gnaiger E; Helge JW; González-Alonso J; Munck-Andersen T; Sondergaard H; Damsgaard R; van Hall G; Saltin B; Calbet JA
    Acta Physiol (Oxf); 2014 May; 211(1):122-34. PubMed ID: 24528535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The S factor--a new derived hemodynamic oxygenation parameter--a useful tool for simplified mathematical modeling of global problems of oxygen transport.
    Farrell K; Wasser T
    Adv Exp Med Biol; 1997; 411():149-55. PubMed ID: 9269423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of coupling of 2-nor-2-formylpyridoxal 5'-phosphate to stroma-free hemoglobin on oxygen affinity and tissue oxygenation. Studies in the isolated perfused rat liver under conditions of normoxia and stagnant hypoxia.
    Van der Plas J; de Vries-van Rossen A; Bleeker WK; Bakker JC
    J Lab Clin Med; 1986 Sep; 108(3):253-60. PubMed ID: 3746098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blood flow and oxygen consumption in avian skeletal muscle during hypoxia.
    Grubb BR
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Feb; 50(2):450-5. PubMed ID: 7204216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of hemoglobin concentration on maximal O2 uptake in canine gastrocnemius muscle in situ.
    Hogan MC; Bebout DE; Wagner PD
    J Appl Physiol (1985); 1991 Mar; 70(3):1105-12. PubMed ID: 2032976
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Skeletal muscle PO2 during hypoxemia and isovolemic anemia.
    Gutierrez G; Marini C; Acero AL; Lund N
    J Appl Physiol (1985); 1990 May; 68(5):2047-53. PubMed ID: 2361907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities.
    Honig CR; Gayeski TE; Federspiel W; Clark A; Clark P
    Adv Exp Med Biol; 1984; 169():23-38. PubMed ID: 6731086
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relation of blood flow to VO2, PO2, and PCO2 in dog gastrocnemius muscle.
    Mohrman DE; Regal RR
    Am J Physiol; 1988 Nov; 255(5 Pt 2):H1004-10. PubMed ID: 3142273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hepatic oxygen and lactate extraction during stagnant hypoxia.
    Samsel RW; Cherqui D; Pietrabissa A; Sanders WM; Roncella M; Emond JC; Schumacker PT
    J Appl Physiol (1985); 1991 Jan; 70(1):186-93. PubMed ID: 2010375
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Systemic and diaphragmatic oxygen delivery-consumption relationships during hemorrhage.
    Ward ME; Chang H; Erice F; Hussain SN
    J Appl Physiol (1985); 1994 Aug; 77(2):653-9. PubMed ID: 8002511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle.
    Gayeski TE; Honig CR
    Am J Physiol; 1988 Jun; 254(6 Pt 2):H1179-86. PubMed ID: 3381902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased hemoglobin O2 affinity does not improve O2 consumption in hypoxemia.
    Gutierrez G; Andry JM
    J Appl Physiol (1985); 1989 Feb; 66(2):837-43. PubMed ID: 2708212
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of modifying O2 diffusivity and delivery on glomerular and tubular function in hypoxic perfused kidney.
    Baines AD; Adamson G; Wojciechowski P; Pliura D; Ho P; Kluger R
    Am J Physiol; 1998 Apr; 274(4):F744-52. PubMed ID: 9575899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of reduced oxyhemoglobin affinity on cerebrovascular response to hypoxic hypoxia.
    Koehler RC; Traystman RJ; Jones MD
    Am J Physiol; 1986 Oct; 251(4 Pt 2):H756-63. PubMed ID: 3766753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systemic oxygen transport in patients with congenital heart disease.
    Berman W; Wood SC; Yabek SM; Dillon T; Fripp RR; Burstein R
    Circulation; 1987 Feb; 75(2):360-8. PubMed ID: 3802439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of altering O2 delivery on VO2 of isolated, working muscle.
    Horstman DH; Gleser M; Delehunt J
    Am J Physiol; 1976 Feb; 230(2):327-34. PubMed ID: 1259010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.