BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8328801)

  • 1. Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1993 Jun; 59(6):1774-8. PubMed ID: 8328801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-dependent degradation of nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1992 Feb; 58(2):690-5. PubMed ID: 1610190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein.
    Blasco R; Castillo F; Martínez-Luque M
    FEBS Lett; 1997 Sep; 414(1):45-9. PubMed ID: 9305729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation and characterization of two nitroreductase genes, nprA and nprB, of Rhodobacter capsulatus.
    Pérez-Reinado E; Blasco R; Castillo F; Moreno-Vivián C; Roldán MD
    Appl Environ Microbiol; 2005 Dec; 71(12):7643-9. PubMed ID: 16332736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Olmo-Mira MF; Cabello P; Pino C; Martínez-Luque M; Richardson DJ; Castillo F; Roldán MD; Moreno-Vivián C
    Arch Microbiol; 2006 Oct; 186(4):339-44. PubMed ID: 16897035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus.
    Roldán MD; Blasco R; Caballero FJ; Castillo F
    Arch Microbiol; 1998 Jan; 169(1):36-42. PubMed ID: 9396833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase.
    Moreno-Vivián C; Soler G; Castillo F
    Eur J Biochem; 1992 Mar; 204(2):531-7. PubMed ID: 1541268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NprA nitroreductase required for 2,4-dinitrophenol reduction in Rhodobacter capsulatus is a dihydropteridine reductase.
    Pérez-Reinado E; Roldán MD; Castillo F; Moreno-Vivián C
    Environ Microbiol; 2008 Nov; 10(11):3174-83. PubMed ID: 18355323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial photodegradation of aminoarenes. Metabolism of 2-amino-4-nitrophenol by Rhodobacter capsulatus.
    Witte CP; Blasco R; Castillo F
    Appl Biochem Biotechnol; 1998 Mar; 69(3):191-200. PubMed ID: 9584054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between nitrate assimilation and 2,4-dinitrophenol cometabolism in Rhodobacter capsulatus E1F1.
    Luque-Almagro VM; Blasco R; Sáez LP; Roldán MD; Moreno-Vivián C; Castillo F; Martínez-Luque M
    Curr Microbiol; 2006 Jul; 53(1):37-42. PubMed ID: 16775785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role for draTG and rnf genes in reduction of 2,4-dinitrophenol by Rhodobacter capsulatus.
    Sáez LP; García P; Martínez-Luque M; Klipp W; Blasco R; Castillo F
    J Bacteriol; 2001 Mar; 183(5):1780-3. PubMed ID: 11160111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halotolerance of the Phototrophic Bacterium Rhodobacter capsulatus E1F1 Is Dependent on the Nitrogen Source.
    Igeno MI; Del Moral CG; Castillo F; Caballero FJ
    Appl Environ Microbiol; 1995 Aug; 61(8):2970-5. PubMed ID: 16535098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Pino C; Olmo-Mira F; Cabello P; Martínez-Luque M; Castillo F; Roldán MD; Moreno-Vivián C
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):127-9. PubMed ID: 16417500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of L-alanine dehydrogenase of the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Caballero FJ; Cárdenas J; Castillo F
    J Bacteriol; 1989 Jun; 171(6):3205-10. PubMed ID: 2722749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia under aerobic conditions.
    Zhao JS; Ward OP
    Appl Environ Microbiol; 2001 Mar; 67(3):1388-91. PubMed ID: 11229938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824.
    Kutty R; Bennett GN
    Arch Microbiol; 2005 Nov; 184(3):158-67. PubMed ID: 16187099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylamine assimilation by Rhodobacter capsulatus E1F1. requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction.
    Cabello P; Pino C; Olmo-Mira MF; Castillo F; Roldán MD; Moreno-Vivián C
    J Biol Chem; 2004 Oct; 279(44):45485-94. PubMed ID: 15322098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of L-phenylalanine and L-tyrosine by the phototrophic bacterium Rhodobacter capsulatus.
    Sáez LP; Castillo F; Caballero FJ
    Curr Microbiol; 1999 Jan; 38(1):51-6. PubMed ID: 9841783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-malyl-coenzyme A/beta-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus.
    Meister M; Saum S; Alber BE; Fuchs G
    J Bacteriol; 2005 Feb; 187(4):1415-25. PubMed ID: 15687206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a nitroreductase with selective nitroreduction properties in the food and intestinal lactic acid bacterium Lactobacillus plantarum WCFS1.
    Guillén H; Curiel JA; Landete JM; Muñoz R; Herraiz T
    J Agric Food Chem; 2009 Nov; 57(21):10457-65. PubMed ID: 19827797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.