These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8328971)

  • 1. Interaction of wild-type signal sequences and their charged variants with model and natural membranes.
    Rao NM; Nagaraj R
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):43-9. PubMed ID: 8328971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic content and lipid interactions of wild-type and mutant OmpA signal peptides correlate with their in vivo function.
    Hoyt DW; Gierasch LM
    Biochemistry; 1991 Oct; 30(42):10155-63. PubMed ID: 1931946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes.
    Tamm LK
    Biochim Biophys Acta; 1991 Jul; 1071(2):123-48. PubMed ID: 1854792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A peptide corresponding to an export-defective mutant OmpA signal sequence with asparagine in the hydrophobic core is unable to insert into model membranes.
    Hoyt DW; Gierasch LM
    J Biol Chem; 1991 Aug; 266(22):14406-12. PubMed ID: 1860847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical studies of signal peptides: implications for signal sequence functions and the involvement of lipid in protein export.
    Jones JD; McKnight CJ; Gierasch LM
    J Bioenerg Biomembr; 1990 Jun; 22(3):213-32. PubMed ID: 2202718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; GariƩpy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of non-bilayer lipid structures by functional signal peptides.
    Killian JA; de Jong AM; Bijvelt J; Verkleij AJ; de Kruijff B
    EMBO J; 1990 Mar; 9(3):815-9. PubMed ID: 2178926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of charged residue substitutions on the membrane-interactive properties of signal sequences of the Escherichia coli LamB protein.
    Jones JD; Gierasch LM
    Biophys J; 1994 Oct; 67(4):1534-45. PubMed ID: 7819486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of the membrane-permeabilizing activities of mastoparans and related histamine-releasing agents in bacteria, erythrocytes, and mast cells.
    Nakao S; Komagoe K; Inoue T; Katsu T
    Biochim Biophys Acta; 2011 Jan; 1808(1):490-7. PubMed ID: 20955685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of phospholipase A2, C, and D activities during myocardial ischemia and reperfusion.
    Moraru II; Popescu LM; Liu X; Engelman RM; Das DK
    Ann N Y Acad Sci; 1994 Jun; 723():328-32. PubMed ID: 8030876
    [No Abstract]   [Full Text] [Related]  

  • 11. Mutations in signal sequence cleavage domain of preproparathyroid hormone alter protein translocation, signal sequence cleavage, and membrane-binding properties.
    Wiren KM; Ivashkiv L; Ma P; Freeman MW; Potts JT; Kronenberg HM
    Mol Endocrinol; 1989 Feb; 3(2):240-50. PubMed ID: 2710131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion mutation in the signal anchor domain activates cleavage of the influenza virus neuraminidase, a type II transmembrane protein.
    Hogue BG; Nayak DP
    J Gen Virol; 1994 May; 75 ( Pt 5)():1015-22. PubMed ID: 8176363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1,25(OH)2D3 regulates protein kinase C activity through two phospholipid-dependent pathways involving phospholipase A2 and phospholipase C in growth zone chondrocytes.
    Sylvia VL; Schwartz Z; Curry DB; Chang Z; Dean DD; Boyan BD
    J Bone Miner Res; 1998 Apr; 13(4):559-69. PubMed ID: 9556056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide.
    Szczesna-Skorupa E; Browne N; Mead D; Kemper B
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):738-42. PubMed ID: 3422456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane.
    Breukink E; van Kraaij C; Demel RA; Siezen RJ; Kuipers OP; de Kruijff B
    Biochemistry; 1997 Jun; 36(23):6968-76. PubMed ID: 9188693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei.
    Farooqui AA; Horrocks LA
    Reprod Nutr Dev; 2005; 45(5):613-31. PubMed ID: 16188211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tryptophan-containing mutant of human (group IIa) secreted phospholipase A2 has a dramatically increased ability to hydrolyze phosphatidylcholine vesicles and cell membranes.
    Baker SF; Othman R; Wilton DC
    Biochemistry; 1998 Sep; 37(38):13203-11. PubMed ID: 9748327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of topogenic sequences in the movement of proteins through membranes.
    Robinson A; Austen B
    Biochem J; 1987 Sep; 246(2):249-61. PubMed ID: 3318806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indolicidin action on membrane permeability: carrier mechanism versus pore formation.
    Rokitskaya TI; Kolodkin NI; Kotova EA; Antonenko YN
    Biochim Biophys Acta; 2011 Jan; 1808(1):91-7. PubMed ID: 20851098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of hydrophobic peptides with model membranes: slow binding to membranes and not subtle variations in pore structure is responsible for the gradual release of entrapped solutes.
    Saberwal G; Nagaraj R
    Biochim Biophys Acta; 1993 Sep; 1151(1):43-50. PubMed ID: 8357819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.