These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8328989)
1. Formation of phenol and thiocatechol metabolites from bromobenzene premercapturic acids through pyridoxal phosphate-dependent C-S lyase activity. Lertratanangkoon K; Denney D Biochem Pharmacol; 1993 Jun; 45(12):2513-25. PubMed ID: 8328989 [TBL] [Abstract][Full Text] [Related]
2. Pathways of formation of 2-, 3- and 4-bromophenol from bromobenzene. Proposed mechanism for C-S lyase reactions of cysteine conjugates. Lertratanangkoon K; Horning EC; Horning MG Res Commun Chem Pathol Pharmacol; 1993 Jun; 80(3):259-82. PubMed ID: 8351409 [TBL] [Abstract][Full Text] [Related]
3. O- and S-methylated bromothiocatechols. Lertratanangkoon K Toxicol Appl Pharmacol; 1993 Oct; 122(2):200-7. PubMed ID: 8212002 [TBL] [Abstract][Full Text] [Related]
4. Bromobenzene metabolism in the rat and guinea pig. Lertratanangkoon K; Horning MG Drug Metab Dispos; 1987; 15(1):1-11. PubMed ID: 2881744 [TBL] [Abstract][Full Text] [Related]
5. Conversion of bromobenzene to 3-bromophenol. A route to 3- and 4-bromophenol through sulfur-series intermediates derived from the 3,4-oxide. Lertratanangkoon K; Horning EC; Horning MG Drug Metab Dispos; 1987; 15(6):857-67. PubMed ID: 2893714 [TBL] [Abstract][Full Text] [Related]
6. Premercapturic acid metabolites of bromobenzene derived via its 2,3- and 3,4-oxide metabolites. Zheng J; Hanzlik RP Xenobiotica; 1991 Apr; 21(4):535-46. PubMed ID: 1897252 [TBL] [Abstract][Full Text] [Related]
7. Biochemical studies of toxic agents. The isolation of premercapturic acids from the urine of animals dosed with chlorobenzene and bromobenzene. Gillham B; Young L Biochem J; 1968 Aug; 109(1):143-7. PubMed ID: 5669843 [TBL] [Abstract][Full Text] [Related]
8. Prevention of bromobenzene toxicity by N-acetylmethionine: correlation between toxicity and the impairment in O- and S-methylation of bromothiocatechols. Lertratanangkoon K; Scimeca JM Toxicol Appl Pharmacol; 1993 Oct; 122(2):191-9. PubMed ID: 8212001 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation of S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteines and S-(trihalovinyl)-L-cysteines by cysteine S-conjugate beta-lyase: indications for formation of both thionoacylating species and thiiranes as reactive intermediates. Commandeur JN; King LJ; Koymans L; Vermeulen NP Chem Res Toxicol; 1996; 9(7):1092-102. PubMed ID: 8902263 [TBL] [Abstract][Full Text] [Related]
10. Cysteine conjugate beta-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A). Iyer RA; Anders MW Chem Res Toxicol; 1997 Jul; 10(7):811-9. PubMed ID: 9250416 [TBL] [Abstract][Full Text] [Related]
11. Quantitation of multiple pathways for the metabolism of nephrotoxic cysteine conjugates using selective inhibitors of L-alpha-hydroxy acid oxidase (L-amino acid oxidase) and cysteine conjugate beta-lyase. Stevens JL; Hatzinger PB; Hayden PJ Drug Metab Dispos; 1989; 17(3):297-303. PubMed ID: 2568912 [TBL] [Abstract][Full Text] [Related]
12. Alpha-ketoacids stimulate rat renal cysteine conjugate beta-lyase activity and potentiate the cytotoxicity of S-(1,2-dichlorovinyl)-L-cysteine. Elfarra AA; Lash LH; Anders MW Mol Pharmacol; 1987 Feb; 31(2):208-12. PubMed ID: 3807895 [TBL] [Abstract][Full Text] [Related]
13. Bioactivation of the cysteine-S-conjugate and mercapturic acid of tetrafluoroethylene to acylating reactive intermediates in the rat: dependence of activation and deactivation activities on acetyl coenzyme A availability. Commandeur JN; De Kanter FJ; Vermeulen NP Mol Pharmacol; 1989 Oct; 36(4):654-63. PubMed ID: 2811861 [TBL] [Abstract][Full Text] [Related]
14. A novel pathway for formation of thiol metabolites and cysteine conjugates from cysteine conjugate sulphoxides. Tomisawa H; Hayashi M; Fukushima M; Iida S; Uda F; Hattori K; Tateishi M Biochem Pharmacol; 1993 Oct; 46(7):1113-7. PubMed ID: 8216359 [TBL] [Abstract][Full Text] [Related]
15. Thioacylating agents as ultimate intermediates in the beta-lyase catalysed metabolism of S-(pentachloro-butadienyl)-L-cysteine. Dekant W; Berthold K; Vamvakas S; Henschler D Chem Biol Interact; 1988; 67(1-2):139-48. PubMed ID: 3168080 [TBL] [Abstract][Full Text] [Related]
16. In vivo metabolites of S-(2-benzothiazolyl)-L-cysteine as markers of in vivo cysteine conjugate beta-lyase and thiol glucuronosyl transferase activities. Elfarra AA; Hwang IY Drug Metab Dispos; 1990; 18(6):917-22. PubMed ID: 1981537 [TBL] [Abstract][Full Text] [Related]
17. Cysteine conjugate beta-lyase in the gastrointestinal bacterium Fusobacterium necrophorum. Larsen GL; Larson JD; Gustafsson JA Xenobiotica; 1983 Nov; 13(11):689-700. PubMed ID: 6673379 [TBL] [Abstract][Full Text] [Related]
18. Role of renal metabolism in risk to toxic chemicals. Lash LH Environ Health Perspect; 1994 Dec; 102 Suppl 11(Suppl 11):75-9. PubMed ID: 7737046 [TBL] [Abstract][Full Text] [Related]
19. Interaction of tyrosine phenol-lyase with pyridoxal phosphate N-oxide and 2'-hydroxy pyridoxal phosphate. Kumagai H; Yamada H; Masugi F; Fukui S Biochim Biophys Acta; 1973 Dec; 327(2):510-4. PubMed ID: 4778947 [No Abstract] [Full Text] [Related]
20. Metabolism of Cysteine Conjugates and Production of Flavor Sulfur Compounds by a Carbon-Sulfur Lyase from the Oral Anaerobe Neiers F; Gourrat K; Canon F; Schwartz M J Agric Food Chem; 2022 Aug; 70(32):9969-9979. PubMed ID: 35920882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]