BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8329382)

  • 21. Base analog and neighboring base effects on substrate specificity of recombinant human G:T mismatch-specific thymine DNA-glycosylase.
    Sibghat-Ullah ; Gallinari P; Xu YZ; Goodman MF; Bloom LB; Jiricny J; Day RS
    Biochemistry; 1996 Oct; 35(39):12926-32. PubMed ID: 8841138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A DNA repair process in Escherichia coli corrects U:G and T:G mismatches to C:G at sites of cytosine methylation.
    Gabbara S; Wyszynski M; Bhagwat AS
    Mol Gen Genet; 1994 Apr; 243(2):244-8. PubMed ID: 8177221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential enhancement of spontaneous transition mutations in the lacI gene of an Ung- strain of Escherichia coli.
    Fix DF; Glickman BW
    Mutat Res; 1986 Oct; 175(2):41-5. PubMed ID: 3531843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF.
    Horst JP; Fritz HJ
    EMBO J; 1996 Oct; 15(19):5459-69. PubMed ID: 8895589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA-substrate sequence specificity of human G:T mismatch repair activity.
    Sibghat-Ullah ; Day RS
    Nucleic Acids Res; 1993 Mar; 21(5):1281-7. PubMed ID: 8464712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutagenicity of nitric oxide is not caused by deamination of cytosine or 5-methylcytosine in double-stranded DNA.
    Schmutte C; Rideout WM; Shen JC; Jones PA
    Carcinogenesis; 1994 Dec; 15(12):2899-903. PubMed ID: 8001253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA.
    Shen JC; Rideout WM; Jones PA
    Nucleic Acids Res; 1994 Mar; 22(6):972-6. PubMed ID: 8152929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1).
    Petersen-Mahrt SK; Neuberger MS
    J Biol Chem; 2003 May; 278(22):19583-6. PubMed ID: 12697753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytosine-to-uracil deamination by SssI DNA methyltransferase.
    Stier I; Kiss A
    PLoS One; 2013; 8(10):e79003. PubMed ID: 24205358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase.
    Gallinari P; Jiricny J
    Nature; 1996 Oct; 383(6602):735-8. PubMed ID: 8878487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells.
    Brown TC; Jiricny J
    Cell; 1988 Aug; 54(5):705-11. PubMed ID: 2842064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frameshift fidelity during replication of double-stranded DNA in HeLa cell extracts.
    Roberts JD; Nguyen D; Kunkel TA
    Biochemistry; 1993 Apr; 32(15):4083-9. PubMed ID: 8385995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of uracil situated in the vicinity of a mispair on the directionality of mismatch correction in Escherichia coli.
    Aprelikova O; Jiricny J
    Nucleic Acids Res; 1991 Apr; 19(7):1443-7. PubMed ID: 2027752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations.
    Cotton RG; Rodrigues NR; Campbell RD
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4397-401. PubMed ID: 3260032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of a vector for site-specific frameshift mutagenesis containing the mutable hotspot of Salmonella typhimurium TA98 on an M13 bacteriophage.
    Benamira M; Marnett LJ
    Chem Res Toxicol; 1993; 6(3):317-27. PubMed ID: 8318654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [UNG-dependent correction of molecular heteroduplexes of M13 phage DNA in Escherichia coli cells].
    Golubovskaia VM; Aprelikova ON; Tomilin NV
    Mol Gen Mikrobiol Virusol; 1989 Jul; (7):24-9. PubMed ID: 2682222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans.
    Nakamura N; Morinaga H; Kikuchi M; Yonekura S; Ishii N; Yamamoto K; Yonei S; Zhang QM
    Mutagenesis; 2008 Sep; 23(5):407-13. PubMed ID: 18524757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites.
    Hendrich B; Hardeland U; Ng HH; Jiricny J; Bird A
    Nature; 1999 Sep; 401(6750):301-4. PubMed ID: 10499592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine.
    Brown TC; Jiricny J
    Cell; 1987 Sep; 50(6):945-50. PubMed ID: 3040266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications.
    Lutsenko E; Bhagwat AS
    Mutat Res; 1999 Jul; 437(1):11-20. PubMed ID: 10425387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.