These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
35 related articles for article (PubMed ID: 8329592)
1. Monte Carlo fluorescence verification of experimental results for the combined ultrasonic and spectroscopic imaging of coronary artery disease. Warren S; Pope K; Yazdi Y; Johnston A; Davis M; Richards-Kortum R Biomed Sci Instrum; 1993; 29():199-206. PubMed ID: 8329592 [TBL] [Abstract][Full Text] [Related]
2. Combined ultrasound and fluorescence spectroscopy for physico-chemical imaging of atherosclerosis. Warren S; Pope K; Yazdi Y; Welch AJ; Thomsen S; Johnston AL; Davis MJ; Richards-Kortum R IEEE Trans Biomed Eng; 1995 Feb; 42(2):121-32. PubMed ID: 7868139 [TBL] [Abstract][Full Text] [Related]
3. Resolution of fluorophore mixtures in biological media using fluorescence spectroscopy and Monte Carlo simulation. Lakhal L; Acha V; Aussenac T Appl Spectrosc; 2014; 68(7):697-711. PubMed ID: 25014836 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo modeling for implantable fluorescent analyte sensors. McShane MJ; Rastegar S; Pishko M; Coté GL IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806 [TBL] [Abstract][Full Text] [Related]
5. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. Hart VP; Doyle TE Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo modeling of time-resolved fluorescence for depth-selective interrogation of layered tissue. Pfefer TJ; Wang Q; Drezek RA Comput Methods Programs Biomed; 2011 Nov; 104(2):161-7. PubMed ID: 21111507 [TBL] [Abstract][Full Text] [Related]
7. Quantitative time-resolved fluorescence spectra of the cortical sarcoma and the adjacent normal tissue determined with an in vivo experimental method and theoretical model. Li Y; Li M; Xu T Appl Spectrosc; 2006 Jul; 60(7):808-12. PubMed ID: 16854270 [TBL] [Abstract][Full Text] [Related]
8. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin. Wang S; Zhao J; Lui H; He Q; Zeng H J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media. Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163 [TBL] [Abstract][Full Text] [Related]
10. A practical Monte Carlo MU verification tool for IMRT quality assurance. Fan J; Li J; Chen L; Stathakis S; Luo W; Du Plessis F; Xiong W; Yang J; Ma CM Phys Med Biol; 2006 May; 51(10):2503-15. PubMed ID: 16675866 [TBL] [Abstract][Full Text] [Related]
11. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions. Susila P; Naus J Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120 [TBL] [Abstract][Full Text] [Related]
12. Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model. Deng Y; Luo Z; Jiang X; Xie W; Luo Q Opt Lett; 2015 Jul; 40(13):3129-32. PubMed ID: 26125384 [TBL] [Abstract][Full Text] [Related]
13. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study. Liebert A; Zołek N; Maniewski R Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362 [TBL] [Abstract][Full Text] [Related]
14. [Monte Carlo simulation of FCS in a laser gradient field]. Chen B; Meng F; Ma H; Ding Y; Jin L; Chen D Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Jun; 21(3):263-6. PubMed ID: 12947641 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization. Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta. Keijzer M; Richards-Kortum RR; Jacques SL; Feld MS Appl Opt; 1989 Oct; 28(20):4286-92. PubMed ID: 20555864 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy: experimental and simulation results. Péry E; Blondel WC; Didelon J; Leroux A; Guillemin F IEEE Trans Biomed Eng; 2009 May; 56(5):1267-76. PubMed ID: 19174327 [TBL] [Abstract][Full Text] [Related]
18. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model. Milej D; Gerega A; Wabnitz H; Liebert A Phys Med Biol; 2014 Mar; 59(6):1407-24. PubMed ID: 24584056 [TBL] [Abstract][Full Text] [Related]
19. A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. Churchman LS; Flyvbjerg H; Spudich JA Biophys J; 2006 Jan; 90(2):668-71. PubMed ID: 16258038 [TBL] [Abstract][Full Text] [Related]
20. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption. Chen Y; Chen ZP; Yang J; Jin JW; Zhang J; Yu RQ Anal Chem; 2013 Feb; 85(4):2015-20. PubMed ID: 23327605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]