These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8330191)
1. Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat--possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Chagoya de Sánchez V; Hernández Múñoz R; Suárez J; Vidrio S; Yáñez L; Díaz Múñoz M Brain Res; 1993 May; 612(1-2):115-21. PubMed ID: 8330191 [TBL] [Abstract][Full Text] [Related]
2. Age-related changes in adenosine metabolic enzymes in sleep/wake regulatory areas of the brain. Mackiewicz M; Nikonova EV; Zimmermann JE; Romer MA; Cater J; Galante RJ; Pack AI Neurobiol Aging; 2006 Feb; 27(2):351-60. PubMed ID: 16399217 [TBL] [Abstract][Full Text] [Related]
3. Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. Mackiewicz M; Nikonova EV; Zimmerman JE; Galante RJ; Zhang L; Cater JR; Geiger JD; Pack AI J Neurochem; 2003 Apr; 85(2):348-57. PubMed ID: 12675911 [TBL] [Abstract][Full Text] [Related]
4. Temporal variations of adenosine metabolism in human blood. Chagoya de Sánchez V; Hernández-Muñoz R; Suárez J; Vidrio S; Yáñez L; Aguilar-Roblero R; Oksenberg A; Vega-González A; Villalobos L; Rosenthal L; Fernández-Cancino F; Drucker-Colín R; Díaz-Muñoz M Chronobiol Int; 1996 Aug; 13(3):163-77. PubMed ID: 8874980 [TBL] [Abstract][Full Text] [Related]
5. Circadian variations of adenosine level in blood and liver and its possible physiological significance. Chagoya de Sánchez V; Hernández-Muñoz R; Díaz-Muñoz M; Villalobos R; Glender W; Vidrio S; Suárez J; Yañez L Life Sci; 1983 Sep; 33(11):1057-64. PubMed ID: 6888162 [TBL] [Abstract][Full Text] [Related]
6. Enzymes of adenosine metabolism in the heart, cardiomyocytes and endothelium. Kochan Z; Smolenski RT; Seymour AM; Yacoub MH Adv Exp Med Biol; 1994; 370():431-4. PubMed ID: 7660945 [No Abstract] [Full Text] [Related]
7. Adenosine metabolism during phorbol myristate acetate-mediated induction of HL-60 cell differentiation: changes in expression pattern of adenosine kinase, adenosine deaminase, and 5'-nucleotidase. Spychala J; Mitchell BS; Barankiewicz J J Immunol; 1997 May; 158(10):4947-52. PubMed ID: 9144513 [TBL] [Abstract][Full Text] [Related]
8. Enzymes involved in purine metabolism--a review of histochemical localization and functional implications. Moriwaki Y; Yamamoto T; Higashino K Histol Histopathol; 1999 Oct; 14(4):1321-40. PubMed ID: 10506947 [TBL] [Abstract][Full Text] [Related]
9. Adenosine kinase and 5'-nucleotidase activity after prolonged wakefulness in the cortex and the basal forebrain of rat. Alanko L; Heiskanen S; Stenberg D; Porkka-Heiskanen T Neurochem Int; 2003 May; 42(6):449-54. PubMed ID: 12547643 [TBL] [Abstract][Full Text] [Related]
10. Adenine nucleotide metabolism in relation to purine enzymes in liver, erythrocytes and cultured fibroblasts. Shenoy TS; Clifford AJ Biochim Biophys Acta; 1975 Nov; 411(1):133-43. PubMed ID: 1182198 [TBL] [Abstract][Full Text] [Related]
11. Adenosine metabolism in the guinea pig heart: the role of cytosolic S-adenosyl-L-homocysteine hydrolase, 5'-nucleotidase and adenosine kinase. Lloyd HG; Schrader J Eur Heart J; 1993 Nov; 14 Suppl I():27-33. PubMed ID: 8293779 [TBL] [Abstract][Full Text] [Related]
12. Characterization of purine nucleotide metabolism in primary rat cardiomyocyte cultures. Zoref-Shani E; Kessler-Icekson G; Wasserman L; Sperling O Biochim Biophys Acta; 1984 Jun; 804(2):161-8. PubMed ID: 6326848 [TBL] [Abstract][Full Text] [Related]
13. Differential distribution of purine metabolizing enzymes between glia and neurons. Ceballos G; Tuttle JB; Rubio R J Neurochem; 1994 Mar; 62(3):1144-53. PubMed ID: 8113801 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia-ischemia alters nucleotide and nucleoside catabolism and Na+,K+-ATPase activity in the cerebral cortex of newborn rats. Pimentel VC; Zanini D; Cardoso AM; Schmatz R; Bagatini MD; Gutierres JM; Carvalho F; Gomes JL; Rubin M; Morsch VM; Moretto MB; Colino-Oliveira M; Sebastião AM; Schetinger MR Neurochem Res; 2013 Apr; 38(4):886-94. PubMed ID: 23397287 [TBL] [Abstract][Full Text] [Related]
15. Different sites of adenosine formation in the heart. Schütz W; Schrader J; Gerlach E Am J Physiol; 1981 Jun; 240(6):H963-70. PubMed ID: 6264801 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of adenylate metabolism in human and rat myocardium. Tavenier M; Skladanowski AC; De Abreu RA; de Jong JW Biochim Biophys Acta; 1995 Jun; 1244(2-3):351-6. PubMed ID: 7599155 [TBL] [Abstract][Full Text] [Related]
17. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? Chagoya de Sánchez V Can J Physiol Pharmacol; 1995 Mar; 73(3):339-55. PubMed ID: 7648513 [TBL] [Abstract][Full Text] [Related]
18. Nitrobenzylthioinosine (NBMPR) binding and nucleoside transporter ENT1 mRNA expression after prolonged wakefulness and recovery sleep in the cortex and basal forebrain of rat. Alanko L; Stenberg D; Porkka-Heiskanen T J Sleep Res; 2003 Dec; 12(4):299-304. PubMed ID: 14633241 [TBL] [Abstract][Full Text] [Related]
19. Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions. Parkinson FE; Sinclair CJ; Othman T; Haughey NJ; Geiger JD Neuropharmacology; 2002 Oct; 43(5):836-46. PubMed ID: 12384169 [TBL] [Abstract][Full Text] [Related]
20. Adenosine metabolism in microvessels from heart and brain. Mistry G; Drummond GI J Mol Cell Cardiol; 1986 Jan; 18(1):13-22. PubMed ID: 3005595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]