BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8330322)

  • 21. The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria.
    Ndu U; Barkay T; Mason RP; Traore Schartup A; Al-Farawati R; Liu J; Reinfelder JR
    PLoS One; 2015; 10(9):e0138333. PubMed ID: 26371471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. IV. Alterations in cellular glutathione content.
    Shenker BJ; Mayro JS; Rooney C; Vitale L; Shapiro IM
    Immunopharmacol Immunotoxicol; 1993; 15(2-3):273-90. PubMed ID: 8349953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicity and transport of three synthesized mercury-thiol-complexes in isolated rabbit renal proximal tubule suspensions.
    Wei H; Qiu L; Divine KK; Ashbaugh MD; McIntyre LC; Fernando Q; Gandolfi AJ
    Drug Chem Toxicol; 1999 May; 22(2):323-41. PubMed ID: 10234470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiol and redox reactive agents exert different effects on glutathione metabolism in HeLa cell cultures.
    Hultberg B; Andersson A; Isaksson A
    Clin Chim Acta; 1999 May; 283(1-2):21-32. PubMed ID: 10404728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria.
    Lund BO; Miller DM; Woods JS
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S181-7. PubMed ID: 1768276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Molecular-Weight Thiols and Thioredoxins Are Important Players in Hg(II) Resistance in Thermus thermophilus HB27.
    Norambuena J; Wang Y; Hanson T; Boyd JM; Barkay T
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29150497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ascorbic acid inhibition of cytochrome P450-catalyzed uroporphyrin accumulation.
    Sinclair PR; Gorman N; Walton HS; Bement WJ; Jacobs JM; Sinclair JF
    Arch Biochem Biophys; 1993 Aug; 304(2):464-70. PubMed ID: 8346921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein S-thiolation and regulation of microsomal glutathione transferase activity by the glutathione redox couple.
    Dafré AL; Sies H; Akerboom T
    Arch Biochem Biophys; 1996 Aug; 332(2):288-94. PubMed ID: 8806737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactivity of Hg(II) with superoxide: evidence for the catalytic dismutation of superoxide by Hg(II).
    Miller DM; Lund BO; Woods JS
    J Biochem Toxicol; 1991; 6(4):293-8. PubMed ID: 1663557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A proton nuclear magnetic resonance study of the interaction of mercury with intact human erythrocytes.
    Rabenstein DL; Isab AA
    Biochim Biophys Acta; 1982 Dec; 721(4):374-84. PubMed ID: 7159599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase.
    Woods JS; Eaton DL; Lukens CB
    Mol Pharmacol; 1984 Sep; 26(2):336-41. PubMed ID: 6482878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the oxidative stress initiated in cultured human keratinocytes by treatment with peroxides.
    Vessey DA; Lee KH; Blacker KL
    J Invest Dermatol; 1992 Dec; 99(6):859-63. PubMed ID: 1469301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes.
    Rubino FM; Pitton M; Brambilla G; Colombi A
    J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased oxidation of uroporphyrinogen by an inducible liver microsomal system. Possible relevance to drug-induced uroporphyria.
    De Matteis F; Harvey C; Reed C; Hempenius R
    Biochem J; 1988 Feb; 250(1):161-9. PubMed ID: 3128275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential acclimation of a marine diatom to inorganic mercury and methylmercury exposure.
    Wu Y; Wang WX
    Aquat Toxicol; 2013 Aug; 138-139():52-9. PubMed ID: 23707793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure.
    Wu Y; Wang WX
    J Hazard Mater; 2012 May; 217-218():271-8. PubMed ID: 22476094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide.
    Obin M; Shang F; Gong X; Handelman G; Blumberg J; Taylor A
    FASEB J; 1998 May; 12(7):561-9. PubMed ID: 9576483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular damage induced by cadmium and mercury in Medicago sativa.
    Ortega-Villasante C; Rellán-Alvarez R; Del Campo FF; Carpena-Ruiz RO; Hernández LE
    J Exp Bot; 2005 Aug; 56(418):2239-51. PubMed ID: 15996984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of metal-glutathione complexes during oxidation by hydrogen peroxide and Cu(II)-catalysis.
    Hsu-Kim H
    Environ Sci Technol; 2007 Apr; 41(7):2338-42. PubMed ID: 17438784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack.
    Zager RA; Burkhart KM
    Kidney Int; 1998 Jun; 53(6):1661-72. PubMed ID: 9607198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.