BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8330382)

  • 1. Leukotrienes C4 and D4 are potent endothelium-dependent relaxing agents in canine splanchnic venous capacitance vessels.
    Pawloski JR; Chapnick BM
    Circ Res; 1993 Aug; 73(2):395-404. PubMed ID: 8330382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LTD4 and bradykinin evoke endothelium-dependent relaxation of the renal vein: dissimilar mechanisms.
    Pawloski JR; Chapnick BM
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H88-95. PubMed ID: 1907107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional and cardiac haemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats: effects of NG-nitro-L-arginine methyl ester.
    Gardiner SM; Compton AM; Kemp PA; Bennett T
    Br J Pharmacol; 1990 Nov; 101(3):632-9. PubMed ID: 2127552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptidoleukotrienes induce an endothelium-dependent relaxation of guinea pig main pulmonary artery and thoracic aorta.
    Sakuma I; Gross SS; Levi R
    Prostaglandins; 1987 Nov; 34(5):685-96. PubMed ID: 3501599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta.
    Zembowicz A; Hatchett RJ; Jakubowski AM; Gryglewski RJ
    Br J Pharmacol; 1993 Sep; 110(1):151-8. PubMed ID: 7693274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrovasodilator-induced relaxation and tolerance development in porcine vena cordis magna: dependence on intact endothelium.
    Kojda G; Beck JK; Meyer W; Noack E
    Br J Pharmacol; 1994 Jun; 112(2):533-40. PubMed ID: 7521258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential vasoconstriction to cysteinyl leukotrienes in the human saphenous vein compared with the internal mammary artery. Implications for graft performance.
    Allen SP; Chester AH; Dashwood MR; Tadjkarimi S; Piper PJ; Yacoub MH
    Circulation; 1994 Jul; 90(1):515-24. PubMed ID: 8026041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine-induced endothelium-independent relaxations in monkey isolated superior and inferior caval veins.
    Fukushima S; Ohhashi T
    Br J Pharmacol; 1993 Aug; 109(4):992-7. PubMed ID: 8401953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between LTD4-induced endothelium-dependent vasomotor relaxation and cGMP.
    Secrest RJ; Ohlstein EH; Chapnick BM
    J Pharmacol Exp Ther; 1988 Apr; 245(1):47-52. PubMed ID: 2834545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of leukotrienes C4 and D4 on human isolated saphenous veins.
    Allen SP; Chester AH; Piper PJ; Sampson AP; Akl ES; Yacoub MH
    Br J Clin Pharmacol; 1992 Nov; 34(5):409-14. PubMed ID: 1467135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats.
    Heygate KM; Lawrence IG; Bennett MA; Thurston H
    Br J Pharmacol; 1995 Dec; 116(8):3251-9. PubMed ID: 8719804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide mediated endothelium-dependent relaxation induced by glibenclamide in rat isolated aorta.
    Chan W; Yao X; Ko W; Huang Y
    Cardiovasc Res; 2000 Apr; 46(1):180-7. PubMed ID: 10727666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibitory action of protamine on human internal thoracic artery contractions: the effect of free hemoglobin.
    Golbasi I; Nacitarhan C; Ozdem S; Turkay C; Karakaya H; Sadan G; Bayezid O
    Eur J Cardiothorac Surg; 2003 Jun; 23(6):962-8. PubMed ID: 12829073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Adrenoceptor activates endothelium-dependent release of nitric oxide in rat aorta.
    Zheng XF; Kwan CY; Daniel EE
    Zhongguo Yao Li Xue Bao; 1995 Sep; 16(5):385-90. PubMed ID: 8701749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory effect of 3-amino-1,2,4-triazole on relaxation induced by hydroxylamine and sodium azide but not hydrogen peroxide or glyceryl trinitrate in rat aorta.
    Mian KB; Martin W
    Br J Pharmacol; 1995 Dec; 116(8):3302-8. PubMed ID: 8719811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the endothelium and nitric oxide on the contractile responses evoked by 5-HT1D receptor agonists in the rabbit isolated saphenous vein.
    Valentin JP; Bonnafous R; John GW
    Br J Pharmacol; 1996 Sep; 119(1):35-42. PubMed ID: 8872354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basal nitric oxide release differentially modulates vasodilations by pinacidil and levcromakalim in goat coronary artery.
    Deka DK; Raviprakash V; Mishra SK
    Eur J Pharmacol; 1998 May; 348(1):11-23. PubMed ID: 9650826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultured endothelial cells restore vasodilator responses to coronary arteries with impaired endothelial function and alter the response to a nitric oxide donor.
    Kenny D; Coughlan MG; Kampine JP; Montgomery RR; Bosnjak ZJ; Warltier DC
    Pharmacology; 1994 Oct; 49(4):249-56. PubMed ID: 7831388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasodilator effects of leptin on canine isolated mesenteric arteries and veins.
    Mohammed MM; Myers DS; Sofola OA; Hainsworth R; Drinkhill MJ
    Clin Exp Pharmacol Physiol; 2007 Aug; 34(8):771-4. PubMed ID: 17600555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.