These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8331608)

  • 21. Regulation of synaptic depression rates in the cricket cercal sensory system.
    Hill AA; Jin P
    J Neurophysiol; 1998 Mar; 79(3):1277-85. PubMed ID: 9497409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction of sensory parameters from a neural map by primary sensory interneurons.
    Jacobs GA; Theunissen FE
    J Neurosci; 2000 Apr; 20(8):2934-43. PubMed ID: 10751446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation.
    Davis GW; Murphey RK
    J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proportional inhibition in the cricket medial giant interneuron.
    Baba Y; Masuda H; Shimozawa T
    J Comp Physiol A; 2001 Feb; 187(1):19-25. PubMed ID: 11318374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Receptive fields of cricket giant interneurones are related to their dendritic structure.
    Bacon JP; Murphey RK
    J Physiol; 1984 Jul; 352():601-23. PubMed ID: 6747901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dendritic design implements algorithm for synaptic extraction of sensory information.
    Ogawa H; Cummins GI; Jacobs GA; Oka K
    J Neurosci; 2008 Apr; 28(18):4592-603. PubMed ID: 18448635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cercal sensory system and giant interneurons in Gryllodes sigillatus.
    Kanou M; Nawae M; Kuroishi H
    Zoolog Sci; 2006 Apr; 23(4):365-73. PubMed ID: 16702770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 1999 Nov; 275(1):61-4. PubMed ID: 10554985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direction-Specific Adaptation in Neuronal and Behavioral Responses of an Insect Mechanosensory System.
    Ogawa H; Oka K
    J Neurosci; 2015 Aug; 35(33):11644-55. PubMed ID: 26290241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postembryonic changes in the response properties of wind-sensitive giant interneurons in cricket.
    Matsuura T; Kanou M
    J Insect Physiol; 2003 Sep; 49(9):805-15. PubMed ID: 16256682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response dynamics and directional properties of nonspiking local interneurons in the cockroach cercal system.
    Kondoh Y; Arima T; Okuma J; Hasegawa Y
    J Neurosci; 1993 Jun; 13(6):2287-305. PubMed ID: 8501508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural mapping of direction and frequency in the cricket cercal sensory system.
    Paydar S; Doan CA; Jacobs GA
    J Neurosci; 1999 Mar; 19(5):1771-81. PubMed ID: 10024362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Connectivity pattern of the cercal-to-giant interneuron system of the American cockroach.
    Daley DL; Camhi JM
    J Neurophysiol; 1988 Oct; 60(4):1350-68. PubMed ID: 3193161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rearing under different conditions results in different functional recoveries of giant interneurons in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Kanou M; Kuroishi H; Takuwa H
    Zoolog Sci; 2008 Jun; 25(6):653-61. PubMed ID: 18624575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of activity in sensory neurons and wind-sensitive interneurons by cercal displacement in the cockroach.
    Goldstein RS; Camhi JM
    J Comp Physiol A; 1988 Aug; 163(4):479-87. PubMed ID: 3184010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer).
    Jacob PF; Hedwig B
    J Neurophysiol; 2015 Nov; 114(5):2649-60. PubMed ID: 26334014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholinergic neurotransmission from mechanosensory afferents to giant interneurons in the terminal abdominal ganglion of the cricket Gryllus bimaculatus.
    Yono O; Aonuma H
    Zoolog Sci; 2008 May; 25(5):517-25. PubMed ID: 18558805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reliability and effectiveness of transmission from exteroceptive sensory neurons to spiking local interneurons in the locust.
    Burrows M
    J Neurosci; 1992 Apr; 12(4):1477-89. PubMed ID: 1313495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Central projections of cercal giant interneurons in the adult field cricket, Gryllus bimaculatus.
    Yamao H; Shidara H; Ogawa H
    J Comp Neurol; 2022 Sep; 530(13):2372-2384. PubMed ID: 35531898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel motor pathways from thoracic interneurons of the ventral giant interneuron system of the cockroach, Periplaneta americana.
    Ritzmann RE; Pollack AJ
    J Neurobiol; 1990 Dec; 21(8):1219-35. PubMed ID: 2273401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.