These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49 related articles for article (PubMed ID: 8331953)
1. Normalization of affine gap costs used in optimal sequence alignment. Allison L J Theor Biol; 1993 Mar; 161(2):263-9. PubMed ID: 8331953 [TBL] [Abstract][Full Text] [Related]
2. A generalized affine gap model significantly improves protein sequence alignment accuracy. Zachariah MA; Crooks GE; Holbrook SR; Brenner SE Proteins; 2005 Feb; 58(2):329-38. PubMed ID: 15562515 [TBL] [Abstract][Full Text] [Related]
3. Fast, optimal alignment of three sequences using linear gap costs. Powell DR; Allison L; Dix TI J Theor Biol; 2000 Dec; 207(3):325-36. PubMed ID: 11082303 [TBL] [Abstract][Full Text] [Related]
4. Generalized affine gap costs for protein sequence alignment. Altschul SF Proteins; 1998 Jul; 32(1):88-96. PubMed ID: 9672045 [TBL] [Abstract][Full Text] [Related]
5. Estimation and reliability of molecular sequence alignments. Thorne JL; Churchill GA Biometrics; 1995 Mar; 51(1):100-13. PubMed ID: 7766767 [TBL] [Abstract][Full Text] [Related]
6. Direct optimization, affine gap costs, and node stability. Aagesen L Mol Phylogenet Evol; 2005 Sep; 36(3):641-53. PubMed ID: 15935703 [TBL] [Abstract][Full Text] [Related]
7. Joint Bayesian estimation of alignment and phylogeny. Redelings BD; Suchard MA Syst Biol; 2005 Jun; 54(3):401-18. PubMed ID: 16012107 [TBL] [Abstract][Full Text] [Related]
8. An improved algorithm for statistical alignment of sequences related by a star tree. Miklós I Bull Math Biol; 2002 Jul; 64(4):771-9. PubMed ID: 12216420 [TBL] [Abstract][Full Text] [Related]
9. Indelign: a probabilistic framework for annotation of insertions and deletions in a multiple alignment. Kim J; Sinha S Bioinformatics; 2007 Feb; 23(3):289-97. PubMed ID: 17110370 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous statistical multiple alignment and phylogeny reconstruction. Fleissner R; Metzler D; von Haeseler A Syst Biol; 2005 Aug; 54(4):548-61. PubMed ID: 16085574 [TBL] [Abstract][Full Text] [Related]
12. Mutation model for nucleotide sequences based on crystal basis. Minichini C; Sciarrino A Biosystems; 2006 Jun; 84(3):191-206. PubMed ID: 16387418 [TBL] [Abstract][Full Text] [Related]
13. Poisson adjacency distributions in genome comparison: multichromosomal, circular, signed and unsigned cases. Xu W; Alain B; Sankoff D Bioinformatics; 2008 Aug; 24(16):i146-52. PubMed ID: 18689817 [TBL] [Abstract][Full Text] [Related]
14. DNA assembly with gaps (Dawg): simulating sequence evolution. Cartwright RA Bioinformatics; 2005 Nov; 21 Suppl 3():iii31-8. PubMed ID: 16306390 [TBL] [Abstract][Full Text] [Related]
15. Rfold: an exact algorithm for computing local base pairing probabilities. Kiryu H; Kin T; Asai K Bioinformatics; 2008 Feb; 24(3):367-73. PubMed ID: 18056736 [TBL] [Abstract][Full Text] [Related]
16. In silico sequence evolution with site-specific interactions along phylogenetic trees. Gesell T; von Haeseler A Bioinformatics; 2006 Mar; 22(6):716-22. PubMed ID: 16332711 [TBL] [Abstract][Full Text] [Related]
17. Simulating DNA coding sequence evolution with EvolveAGene 3. Hall BG Mol Biol Evol; 2008 Apr; 25(4):688-95. PubMed ID: 18192698 [TBL] [Abstract][Full Text] [Related]
18. The amount and pattern of DNA polymorphism under the neutral mutation hypothesis. Tajima F; Misawa K; Innan H Genetica; 1998; 102-103(1-6):103-7. PubMed ID: 9766959 [TBL] [Abstract][Full Text] [Related]
19. siRNA becomes smart and intelligent. Miyagishi M; Taira K Nat Biotechnol; 2005 Aug; 23(8):946-7. PubMed ID: 16082364 [No Abstract] [Full Text] [Related]
20. Robust prediction of consensus secondary structures using averaged base pairing probability matrices. Kiryu H; Kin T; Asai K Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]