BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 8332451)

  • 1. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.
    Koonin EV
    Nucleic Acids Res; 1993 Jun; 21(11):2541-7. PubMed ID: 8332451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the rat proteasomal ATPases: determination of highly conserved structural motifs and rules for their spacing.
    Makino Y; Yogosawa S; Kanemaki M; Yoshida T; Yamano K; Kishimoto T; Moncollin V; Egly JM; Muramatsu M; Tamura T
    Biochem Biophys Res Commun; 1996 Mar; 220(3):1049-54. PubMed ID: 8607789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bacterial replicative helicase DnaB evolved from a RecA duplication.
    Leipe DD; Aravind L; Grishin NV; Koonin EV
    Genome Res; 2000 Jan; 10(1):5-16. PubMed ID: 10645945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization and evolution of bacterial and bacteriophage primase-helicase systems.
    Ilyina TV; Gorbalenya AE; Koonin EV
    J Mol Evol; 1992 Apr; 34(4):351-7. PubMed ID: 1569588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery.
    Tuteja N; Tuteja R
    Eur J Biochem; 2004 May; 271(10):1835-48. PubMed ID: 15128294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system.
    Aravind L; Koonin EV
    Genome Res; 2001 Aug; 11(8):1365-74. PubMed ID: 11483577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members.
    Iyer LM; Koonin EV; Leipe DD; Aravind L
    Nucleic Acids Res; 2005; 33(12):3875-96. PubMed ID: 16027112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prokaryotic members of a new family of putative helicases with similarity to transcription activator SNF2.
    Kolstø AB; Bork P; Kvaløy K; Lindback T; Grønstadt A; Kristensen T; Sander C
    J Mol Biol; 1993 Mar; 230(2):684-8. PubMed ID: 8464078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary history and higher order classification of AAA+ ATPases.
    Iyer LM; Leipe DD; Koonin EV; Aravind L
    J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superfamily of UvrA-related ATPases includes three more subunits of putative ATP-dependent nucleases.
    Koonin EV; Gorbalenya AE
    Protein Seq Data Anal; 1992; 5(1):43-5. PubMed ID: 1492096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An expanding family of helicases within the 'DEAD/H' superfamily.
    Bork P; Koonin EV
    Nucleic Acids Res; 1993 Feb; 21(3):751-2. PubMed ID: 8382805
    [No Abstract]   [Full Text] [Related]  

  • 13. Two domains of superfamily I helicases may exist as separate proteins.
    Koonin EV; Rudd KE
    Protein Sci; 1996 Jan; 5(1):178-80. PubMed ID: 8771213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes.
    Gorbalenya AE; Koonin EV; Donchenko AP; Blinov VM
    Nucleic Acids Res; 1989 Jun; 17(12):4713-30. PubMed ID: 2546125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of DNA helicase and primase activities with a subassembly of the herpes simplex virus 1 helicase-primase composed of the UL5 and UL52 gene products.
    Dodson MS; Lehman IR
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1105-9. PubMed ID: 1847509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-assisted dissection of rolling circle DNA replication.
    Koonin EV; Ilyina TV
    Biosystems; 1993; 30(1-3):241-68. PubMed ID: 8374079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chilo iridescent virus encodes a putative helicase belonging to a distinct family within the "DEAD/H" superfamily: implications for the evolution of large DNA viruses.
    Sonntag KC; Schnitzler P; Koonin EV; Darai G
    Virus Genes; 1994 Mar; 8(2):151-8. PubMed ID: 8073636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins.
    Bork P; Hofmann K; Bucher P; Neuwald AF; Altschul SF; Koonin EV
    FASEB J; 1997 Jan; 11(1):68-76. PubMed ID: 9034168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein.
    Sakakibara N; Kasiviswanathan R; Melamud E; Han M; Schwarz FP; Kelman Z
    Nucleic Acids Res; 2008 Mar; 36(4):1309-20. PubMed ID: 18184696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.