BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8332592)

  • 1. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure.
    Paulsen MD; Ornstein RL
    Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the product specificity and coupling of cytochrome P450cam.
    Paulsen MD; Ornstein RL
    J Comput Aided Mol Des; 1992 Oct; 6(5):449-60. PubMed ID: 1474394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation.
    Raag R; Poulos TL
    Biochemistry; 1991 Mar; 30(10):2674-84. PubMed ID: 2001355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam.
    Paulsen MD; Bass MB; Ornstein RL
    J Biomol Struct Dyn; 1991 Oct; 9(2):187-203. PubMed ID: 1741957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylbenzene hydroxylation by cytochrome P450cam.
    Filipovic D; Paulsen MD; Loida PJ; Sligar SG; Ornstein RL
    Biochem Biophys Res Commun; 1992 Nov; 189(1):488-95. PubMed ID: 1449498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study.
    Helms V; Wade RC
    Biophys J; 1995 Sep; 69(3):810-24. PubMed ID: 8519982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket.
    Helms V; Deprez E; Gill E; Barret C; Hui Bon Hoa G; Wade RC
    Biochemistry; 1996 Feb; 35(5):1485-99. PubMed ID: 8634279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.
    Deprez E; Gill E; Helms V; Wade RC; Hui Bon Hoa G
    J Inorg Biochem; 2002 Sep; 91(4):597-606. PubMed ID: 12237225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations.
    Loida PJ; Sligar SG; Paulsen MD; Arnold GE; Ornstein RL
    J Biol Chem; 1995 Mar; 270(10):5326-30. PubMed ID: 7890644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD; Filipovic D; Sligar SG; Ornstein RL
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicopy molecular dynamics simulations suggest how to reconcile crystallographic and product formation data for camphor enantiomers bound to cytochrome P-450cam.
    Das B; Helms V; Lounnas V; Wade RC
    J Inorg Biochem; 2000 Aug; 81(3):121-31. PubMed ID: 11051557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate analogue induced changes of the CO-stretching mode in the cytochrome P450cam-carbon monoxide complex.
    Jung C; Hoa GH; Schröder KL; Simon M; Doucet JP
    Biochemistry; 1992 Dec; 31(51):12855-62. PubMed ID: 1463755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5,5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam.
    Collins JR; Loew GH
    J Biol Chem; 1988 Mar; 263(7):3164-70. PubMed ID: 3343243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450cam-monoterpene interactions.
    Van Roon A; Parsons JR; Govers HA
    SAR QSAR Environ Res; 2005 Aug; 16(4):369-84. PubMed ID: 16234177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):813-30. PubMed ID: 11061977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis.
    Atkins WM; Sligar SG
    J Biol Chem; 1988 Dec; 263(35):18842-9. PubMed ID: 3198602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitor-induced conformational change in cytochrome P-450CAM.
    Raag R; Li H; Jones BC; Poulos TL
    Biochemistry; 1993 May; 32(17):4571-8. PubMed ID: 8485133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam.
    Paulsen MD; Ornstein RL
    J Comput Aided Mol Des; 1994 Aug; 8(4):389-404. PubMed ID: 7815091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.