BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8332605)

  • 1. Picosecond timescale rigid-helix and side-chain motions in deoxymyoglobin.
    Furois-Corbin S; Smith JC; Kneller GR
    Proteins; 1993 Jun; 16(2):141-54. PubMed ID: 8332605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of cytochrome c: correlation to hydrogen exchange.
    García AE; Hummer G
    Proteins; 1999 Aug; 36(2):175-91. PubMed ID: 10398365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency vibrations in alpha-helices: helicoidal analysis of polyalanine and deoxymyoglobin molecular dynamics trajectories.
    Furois-Corbin S; Smith JC; Lavery R
    Biopolymers; 1995 Jun; 35(6):555-71. PubMed ID: 7766822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxymyoglobin studied by the conformational normal mode analysis. I. Dynamics of globin and the heme-globin interaction.
    Seno Y; Go N
    J Mol Biol; 1990 Nov; 216(1):95-109. PubMed ID: 2231732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description.
    Moritsugu K; Smith JC
    J Phys Chem B; 2006 Mar; 110(11):5807-16. PubMed ID: 16539528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular dynamics analysis of protein structural elements.
    Post CB; Dobson CM; Karplus M
    Proteins; 1989; 5(4):337-54. PubMed ID: 2798410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxymyoglobin studied by the conformational normal mode analysis. II. The conformational change upon oxygenation.
    Seno Y; Go N
    J Mol Biol; 1990 Nov; 216(1):111-26. PubMed ID: 2231726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Equilibrium fluctuations in myoglobin and lysozyme].
    Krupianskiĭ IuF; Esin SV; Mikhaĭliuk MG; Vetrov OD; Eshchenko GV
    Biofizika; 2004; 49(3):401-12. PubMed ID: 15327199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-like side-chain dynamics in myoglobin.
    Kneller GR; Smith JC
    J Mol Biol; 1994 Sep; 242(3):181-5. PubMed ID: 8089839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations.
    Hünenberger PH; Mark AE; van Gunsteren WF
    J Mol Biol; 1995 Sep; 252(4):492-503. PubMed ID: 7563068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics of sickle and normal hemoglobins.
    Prabhakaran M; Johnson ME
    Biopolymers; 1993 May; 33(5):735-42. PubMed ID: 8343575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix motion in protein C12A-p8(MTCP1): comparison of molecular dynamics simulations and multifield NMR relaxation data.
    Barthe P; Roumestand C; Déméné H; Chiche L
    J Comput Chem; 2002 Dec; 23(16):1577-86. PubMed ID: 12395426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation.
    Ichiye T; Karplus M
    Proteins; 1987; 2(3):236-59. PubMed ID: 3447180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of secondary structure motions in proteins: application to myohemerythrin.
    Rojewska D; Elber R
    Proteins; 1990; 7(3):265-79. PubMed ID: 2362947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The building of protein structures from alpha-carbon coordinates.
    Correa PE
    Proteins; 1990; 7(4):366-77. PubMed ID: 2381906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.