These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8332605)

  • 1. Picosecond timescale rigid-helix and side-chain motions in deoxymyoglobin.
    Furois-Corbin S; Smith JC; Kneller GR
    Proteins; 1993 Jun; 16(2):141-54. PubMed ID: 8332605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of cytochrome c: correlation to hydrogen exchange.
    García AE; Hummer G
    Proteins; 1999 Aug; 36(2):175-91. PubMed ID: 10398365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency vibrations in alpha-helices: helicoidal analysis of polyalanine and deoxymyoglobin molecular dynamics trajectories.
    Furois-Corbin S; Smith JC; Lavery R
    Biopolymers; 1995 Jun; 35(6):555-71. PubMed ID: 7766822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxymyoglobin studied by the conformational normal mode analysis. I. Dynamics of globin and the heme-globin interaction.
    Seno Y; Go N
    J Mol Biol; 1990 Nov; 216(1):95-109. PubMed ID: 2231732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description.
    Moritsugu K; Smith JC
    J Phys Chem B; 2006 Mar; 110(11):5807-16. PubMed ID: 16539528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular dynamics analysis of protein structural elements.
    Post CB; Dobson CM; Karplus M
    Proteins; 1989; 5(4):337-54. PubMed ID: 2798410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxymyoglobin studied by the conformational normal mode analysis. II. The conformational change upon oxygenation.
    Seno Y; Go N
    J Mol Biol; 1990 Nov; 216(1):111-26. PubMed ID: 2231726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Equilibrium fluctuations in myoglobin and lysozyme].
    Krupianskiĭ IuF; Esin SV; Mikhaĭliuk MG; Vetrov OD; Eshchenko GV
    Biofizika; 2004; 49(3):401-12. PubMed ID: 15327199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-like side-chain dynamics in myoglobin.
    Kneller GR; Smith JC
    J Mol Biol; 1994 Sep; 242(3):181-5. PubMed ID: 8089839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations.
    Hünenberger PH; Mark AE; van Gunsteren WF
    J Mol Biol; 1995 Sep; 252(4):492-503. PubMed ID: 7563068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics of sickle and normal hemoglobins.
    Prabhakaran M; Johnson ME
    Biopolymers; 1993 May; 33(5):735-42. PubMed ID: 8343575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix motion in protein C12A-p8(MTCP1): comparison of molecular dynamics simulations and multifield NMR relaxation data.
    Barthe P; Roumestand C; Déméné H; Chiche L
    J Comput Chem; 2002 Dec; 23(16):1577-86. PubMed ID: 12395426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation.
    Ichiye T; Karplus M
    Proteins; 1987; 2(3):236-59. PubMed ID: 3447180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of secondary structure motions in proteins: application to myohemerythrin.
    Rojewska D; Elber R
    Proteins; 1990; 7(3):265-79. PubMed ID: 2362947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The building of protein structures from alpha-carbon coordinates.
    Correa PE
    Proteins; 1990; 7(4):366-77. PubMed ID: 2381906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.