BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8332607)

  • 1. A vector projection approach to predicting HIV protease cleavage sites in proteins.
    Chou KC; Zhang CT; Kézdy FJ
    Proteins; 1993 Jun; 16(2):195-204. PubMed ID: 8332607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support Vector Machines for predicting HIV protease cleavage sites in protein.
    Cai YD; Liu XJ; Xu XB; Chou KC
    J Comput Chem; 2002 Jan; 23(2):267-74. PubMed ID: 11924738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting human immunodeficiency virus protease cleavage sites in proteins by a discriminant function method.
    Chou KC; Tomasselli AG; Reardon IM; Heinrikson RL
    Proteins; 1996 Jan; 24(1):51-72. PubMed ID: 8628733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of human immunodeficiency virus protease cleavage sites in proteins.
    Chou KC
    Anal Biochem; 1996 Jan; 233(1):1-14. PubMed ID: 8789141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins.
    Zhang CT; Chou KC
    Protein Eng; 1994 Jan; 7(1):65-73. PubMed ID: 8140096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vector projection method for predicting the specificity of GalNAc-transferase.
    Chou KC; Zhang CT; Kézdy FJ; Poorman RA
    Proteins; 1995 Feb; 21(2):118-26. PubMed ID: 7777486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting cleavability of peptide sequences by HIV protease via correlation-angle approach.
    Chou JJ
    J Protein Chem; 1993 Jun; 12(3):291-302. PubMed ID: 8397787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins.
    Chou JJ
    Biopolymers; 1993 Sep; 33(9):1405-14. PubMed ID: 8400033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases.
    Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S
    Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV-1 protease cleavage site prediction based on amino acid property.
    Niu B; Lu L; Liu L; Gu TH; Feng KY; Lu WC; Cai YD
    J Comput Chem; 2009 Jan; 30(1):33-9. PubMed ID: 18496789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase.
    Chou KC
    Protein Sci; 1995 Jul; 4(7):1365-83. PubMed ID: 7670379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the specificity of HIV protease: an application of Markov chain theory.
    Chou KC; Zhang CT
    J Protein Chem; 1993 Dec; 12(6):709-24. PubMed ID: 8136021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of pseudopeptide inhibitors of HIV-1 aspartic protease: analysis and tuning of the subsite specificity.
    Tossi A; Antcheva N; Romeo D; Miertus S
    Pept Res; 1995; 8(6):328-34. PubMed ID: 8838416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites.
    Potempa M; Lee SK; Kurt Yilmaz N; Nalivaika EA; Rogers A; Spielvogel E; Carter CW; Schiffer CA; Swanstrom R
    J Mol Biol; 2018 Dec; 430(24):5182-5195. PubMed ID: 30414407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins.
    Chou KC
    J Biol Chem; 1993 Aug; 268(23):16938-48. PubMed ID: 8349584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network method for predicting HIV protease cleavage sites in protein.
    Cai YD; Yu H; Chou KC
    J Protein Chem; 1998 Oct; 17(7):607-15. PubMed ID: 9853675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base.
    Poorman RA; Tomasselli AG; Heinrikson RL; Kézdy FJ
    J Biol Chem; 1991 Aug; 266(22):14554-61. PubMed ID: 1860861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.