These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 833276)

  • 1. The pathophysiology of acid-base changes in chronically phosphate-depleted rats: bone-kidney interactions.
    Emmett M; Goldfarb S; Agus ZS; Narins RG
    J Clin Invest; 1977 Feb; 59(2):291-8. PubMed ID: 833276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired distal nephron acidification in chronically phosphate depleted rats.
    Kurtz TW; Hsu CH
    Pflugers Arch; 1978 Nov; 377(3):229-34. PubMed ID: 32521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal and systemic acid-base effects of chronic hypoparathyroidism in dogs.
    Hulter HN; Toto RD; Bonner EL; Ilnicki LP; Sebastian A
    Am J Physiol; 1981 Nov; 241(5):F495-501. PubMed ID: 7304746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distal acidification defect induced by phosphate deprivation.
    Arruda JA; Julka NK; Rubinstein H; Sabatini S; Kurtzman NA
    Metabolism; 1980 Sep; 29(9):826-36. PubMed ID: 7412557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+).
    Cohen JJ; Madias NE; Wolf CJ; Schwartz WB
    J Clin Invest; 1976 Jun; 57(6):1483-9. PubMed ID: 6488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis.
    Morris RC
    J Clin Invest; 1968 Jul; 47(7):1648-63. PubMed ID: 5658593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phosphate depletion on magnesium homeostasis in rats.
    Kreusser WJ; Kurokawa K; Aznar E; Sachtjen E; Massry SG
    J Clin Invest; 1978 Mar; 61(3):573-81. PubMed ID: 641138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The critical role of the adrenal gland in the renal regulation of acid-base equilibrium during chronic hypotonic expansion. Evidence that chronic hyponatremia is a potent stimulus to aldosterone secretion.
    Cohen JJ; Hulter HN; Smithline N; Melby JC; Schwartz WB
    J Clin Invest; 1976 Nov; 58(5):1201-8. PubMed ID: 993340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal adaptation to chronic hypocapnia: dietary constraints in achieving H+ retention.
    Gougoux A; Kaehny WD; Cohen JJ
    Am J Physiol; 1975 Nov; 229(5):1330-7. PubMed ID: 1200151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis.
    Hernandez RE; Schambelan M; Cogan MG; Colman J; Morris RC; Sebastian A
    Kidney Int; 1987 Jun; 31(6):1356-67. PubMed ID: 3039234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of renal net acid excretion as a determinant of fasting urinary calcium excretion.
    Lemann J; Gray RW; Maierhofer WJ; Cheung HS
    Kidney Int; 1986 Mar; 29(3):743-6. PubMed ID: 3702225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypophosphaturia impairs the renal defense against metabolic acidosis.
    Hulter HN
    Kidney Int; 1984 Sep; 26(3):302-7. PubMed ID: 6513276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic acidosis-induced alteration in bone bicarbonate and phosphate.
    Bushinsky DA; Smith SB; Gavrilov KL; Gavrilov LF; Li J; Levi-Setti R
    Am J Physiol Renal Physiol; 2003 Sep; 285(3):F532-9. PubMed ID: 12759230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of maximally acid urine by the isolated dog kidney.
    Kleinman JG; Ellis B; Teresi LM; Itskovitz HD
    J Lab Clin Med; 1979 Oct; 94(4):600-7. PubMed ID: 39105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid and mineral balances and bone in familial proximal renal tubular acidosis.
    Lemann J; Adams ND; Wilz DR; Brenes LG
    Kidney Int; 2000 Sep; 58(3):1267-77. PubMed ID: 10972690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximal tubular bicarbonate reabsorption and PCO2 in chronic metabolic alkalosis in the rat.
    Maddox DA; Gennari FJ
    J Clin Invest; 1983 Oct; 72(4):1385-95. PubMed ID: 6415109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bisphosphonates and extrarenal acid buffering capacity.
    Freudiger H; Bonjour JP
    Calcif Tissue Int; 1989 Jan; 44(1):3-10. PubMed ID: 2521807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of two models of hypercalcemia on renal acid base metabolism.
    Mitnick P; Greenberg A; Coffman T; Kelepouris E; Wolf CJ; Goldfarb S
    Kidney Int; 1982 Apr; 21(4):613-20. PubMed ID: 6896540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of dexamethasone on renal potassium excretion and acute potassium tolerance.
    Bia MJ; Tyler K; DeFronzo R
    Endocrinology; 1983 Nov; 113(5):1690-6. PubMed ID: 6628322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of increased sodium avidity to facilitate renal acid excretion in dogs fed sulfuric acid.
    Kraut JA; Wish JB; Sweet SJ; Weinstein SS; Cohen JJ
    Kidney Int; 1981 Jul; 20(1):50-4. PubMed ID: 7300112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.