These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8333166)

  • 21. Spatial and temporal properties of cat horizontal cells after prolonged dark adaptation.
    Lankheet MJ; Rowe MH; Van Wezel RJ; van de Grind WA
    Vision Res; 1996 Dec; 36(24):3955-67. PubMed ID: 9068849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of sensitivity regulation in primate outer retina: the horizontal cell network.
    Lee BB; Dacey DM; Smith VC; Pokorny J
    J Vis; 2003; 3(7):513-26. PubMed ID: 14507256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatiotemporal frequency responses of cat retinal ganglion cells.
    Frishman LJ; Freeman AW; Troy JB; Schweitzer-Tong DE; Enroth-Cugell C
    J Gen Physiol; 1987 Apr; 89(4):599-628. PubMed ID: 3585279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinal bipolar cells: contrast encoding for sinusoidal modulation and steps of luminance contrast.
    Burkhardt DA; Fahey PK; Sikora MA
    Vis Neurosci; 2004; 21(6):883-93. PubMed ID: 15733343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stochastic retinal mechanisms of light adaptation and gain control.
    Rudd ME; Brown LG
    Spat Vis; 1996; 10(2):125-48. PubMed ID: 8903136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gain control mechanisms in X- and Y-type retinal ganglion cells of the cat.
    Saito H; Fukada Y
    Vision Res; 1986; 26(3):391-408. PubMed ID: 3727406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation and dynamics in X-cells and Y-cells of the cat retina.
    Jakiela HG; Enroth-Cugell C
    Exp Brain Res; 1976 Feb; 24(4):335-42. PubMed ID: 1261621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation.
    Virsu V; Lee BB
    J Neurophysiol; 1983 Oct; 50(4):864-78. PubMed ID: 6631467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal light adaptation--evidence for a feedback mechanism.
    Tranchina D; Gordon J; Shapley RM
    Nature; 1984 Jul 26-Aug 1; 310(5975):314-6. PubMed ID: 6462216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a common motion mechanism of luminance-modulated and contrast-modulated patterns: selective adaptation.
    Turano K
    Perception; 1991; 20(4):455-66. PubMed ID: 1771131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat.
    Derrington AM; Lennie P
    J Physiol; 1982 Dec; 333():343-66. PubMed ID: 7182469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low frequency temporal modulation of light promotes a myopic shift in refractive compensation to all spectacle lenses.
    Crewther SG; Barutchu A; Murphy MJ; Crewther DP
    Exp Eye Res; 2006 Aug; 83(2):322-8. PubMed ID: 16579985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative aspects of sensitivity and summation in the cat retina.
    Cleland BG; Enroth-cugell C
    J Physiol; 1968 Sep; 198(1):17-38. PubMed ID: 5677029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light adaptation increases response latency of alpha ganglion cells via a threshold-like nonlinearity.
    Chang L; He S
    Neuroscience; 2014 Jan; 256():101-16. PubMed ID: 24144626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic cone adaptation modulates feedback efficiency from horizontal cells to cones.
    Fahrenfort I; Habets RL; Spekreijse H; Kamermans M
    J Gen Physiol; 1999 Oct; 114(4):511-24. PubMed ID: 10498670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal transmission from red cones to horizontal cells in the turtle retina.
    Normann RA; Perlman I
    J Physiol; 1979 Jan; 286():509-24. PubMed ID: 220415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase-shifted direction adaptation of the vestibulo-ocular reflex in cat.
    Powell KD; Peterson BW; Baker JF
    J Vestib Res; 1996; 6(4):277-93. PubMed ID: 8839824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptation in the goldfish retina.
    Easter SS
    J Physiol; 1968 Mar; 195(2):273-81. PubMed ID: 5647319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.