These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8333349)

  • 1. The transendothelial DC potential of rat blood-brain barrier vessels in situ.
    Revest PA; Jones HC; Abbott NJ
    Adv Exp Med Biol; 1993; 331():71-4. PubMed ID: 8333349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transendothelial electrical potential across pial vessels in anaesthetised rats: a study of ion permeability and transport at the blood-brain barrier.
    Revest PA; Jones HC; Abbott NJ
    Brain Res; 1994 Jul; 652(1):76-82. PubMed ID: 7525022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and functional characterization of an in vitro blood-brain barrier model.
    Stanness KA; Westrum LE; Fornaciari E; Mascagni P; Nelson JA; Stenglein SG; Myers T; Janigro D
    Brain Res; 1997 Oct; 771(2):329-42. PubMed ID: 9401753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules.
    Grantham JJ; Kurg MB; Obloff J
    J Clin Invest; 1970 Oct; 49(10):1815-26. PubMed ID: 5456795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of endothelial paracellular clefts and their tight junctions in the pial microvessels of the rat.
    Cassella JP; Lawrenson JG; Firth JA
    J Neurocytol; 1997 Aug; 26(8):567-75. PubMed ID: 9350808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in situ cytochemical evaluation of blood-brain barrier sodium, potassium-activated adenosine triphosphatase polarity.
    Manoonkitiwongsa PS; Whitter EF; Schultz RL
    Brain Res; 1998 Jul; 798(1-2):261-70. PubMed ID: 9666144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium transport at the blood-brain and blood-CSF barriers.
    Keep RF; Xiang J; Betz AL
    Adv Exp Med Biol; 1993; 331():43-54. PubMed ID: 8392782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leukocyte/endothelial interactions and blood-brain barrier permeability in rats during cerebral superfusion with LTB4.
    Schürer L; Corvin S; Röhrich F; Abels C; Baethmann A
    Acta Neurochir Suppl (Wien); 1994; 60():51-4. PubMed ID: 7976633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intravital microscopy study of radiation-induced changes in permeability and leukocyte-endothelial cell interactions in the microvessels of the rat pia mater and cremaster muscle.
    Gaber MW; Yuan H; Killmar JT; Naimark MD; Kiani MF; Merchant TE
    Brain Res Brain Res Protoc; 2004 Apr; 13(1):1-10. PubMed ID: 15063835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic transport and membrane potential of rat liver cells in normal and low-chloride solutions.
    Claret B; Claret M; Mazet JL
    J Physiol; 1973 Apr; 230(1):87-101. PubMed ID: 4702455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of ions across the blood-brain barrier.
    Betz AL
    Fed Proc; 1986 Jun; 45(7):2050-4. PubMed ID: 3011518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain.
    Edwards G; Gardener MJ; Feletou M; Brady G; Vanhoutte PM; Weston AH
    Br J Pharmacol; 1999 Nov; 128(5):1064-70. PubMed ID: 10556944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characteristics of pial microvessels of the rat optic nerve. Can pial microvessels be used as a model for the blood-brain barrier?
    Lawrenson JG; Reid AR; Allt G
    Cell Tissue Res; 1997 May; 288(2):259-65. PubMed ID: 9082961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of selectivity to small ions in paracellular pathways in cerebral and muscle capillaries of the frog.
    Crone C
    J Physiol; 1984 Aug; 353():317-37. PubMed ID: 6332899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood-brain barrier.
    Sánchez del Pino MM; Hawkins RA; Peterson DR
    J Biol Chem; 1995 Jun; 270(25):14907-12. PubMed ID: 7797469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiology of blood-brain barrier breakdown.
    Nag S
    Methods Mol Med; 2003; 89():97-119. PubMed ID: 12958415
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonpolar amino acid substitutions of potential cation binding residues glu-955 and glu-956 of the rat alpha 1 isoform of Na+, K(+)-ATPase.
    Van Huysse JW; Lingrel JB
    Cell Mol Biol Res; 1993; 39(5):497-507. PubMed ID: 8173592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glioma cell influence on cerebral endothelial cell Na(+)-K(+)-ATPase.
    Beck DW; Dunbar EC; Poor MM
    Adv Neurol; 1990; 52():415-20. PubMed ID: 2168668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.