These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 8333529)

  • 21. Soybean beta 51-63 peptide stimulates cholecystokinin secretion via a calcium-sensing receptor in enteroendocrine STC-1 cells.
    Nakajima S; Hira T; Eto Y; Asano K; Hara H
    Regul Pept; 2010 Jan; 159(1-3):148-55. PubMed ID: 19896983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery.
    Mistry DK; Garland CJ
    Br J Pharmacol; 1998 Jul; 124(6):1131-40. PubMed ID: 9720783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for a Ca-activated inwardly rectifying K channel in human macrophages.
    Gallin EK
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C77-85. PubMed ID: 2750892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of potassium and chloride channels in the basolateral membrane of bovine nonpigmented ciliary epithelial cells.
    Edelman JL; Loo DD; Sachs G
    Invest Ophthalmol Vis Sci; 1995 Dec; 36(13):2706-16. PubMed ID: 7499093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-conductance Ca2+-activated potassium channels in secretory neurons.
    Lara J; Acevedo JJ; Onetti CG
    J Neurophysiol; 1999 Sep; 82(3):1317-25. PubMed ID: 10482751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptones stimulate cholecystokinin secretion and gene transcription in the intestinal cell line STC-1.
    Cordier-Bussat M; Bernard C; Haouche S; Roche C; Abello J; Chayvialle JA; Cuber JC
    Endocrinology; 1997 Mar; 138(3):1137-44. PubMed ID: 9048620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of poly-(lactide-co-glycolide) nanoparticles on electrophysiological properties of enteroendocrine cells.
    Shah B; Kona S; Gilbertson TA; Nguyen KT
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3533-42. PubMed ID: 21776734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide receptors activate cation, potassium, and chloride currents in a liver cell line.
    Fitz JG; Sostman AH
    Am J Physiol; 1994 Apr; 266(4 Pt 1):G544-53. PubMed ID: 8178992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium-mediated agonists activate an inwardly rectified K+ channel in colonic secretory cells.
    Devor DC; Frizzell RA
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1271-80. PubMed ID: 7694492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal.
    Bielefeldt K; Jackson MB
    J Neurophysiol; 1993 Jul; 70(1):284-98. PubMed ID: 8395581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-cell and single-channel calcium currents in guinea pig basal forebrain neurons.
    Griffith WH; Taylor L; Davis MJ
    J Neurophysiol; 1994 Jun; 71(6):2359-76. PubMed ID: 7931521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes.
    Barres BA; Chun LL; Corey DP
    Glia; 1988; 1(1):10-30. PubMed ID: 2466789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potassium and chloride currents in rat gastric enterochromaffin-like cells.
    Loo DD; Sachs G; Prinz C
    Am J Physiol; 1996 May; 270(5):E739-45. PubMed ID: 8967460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aminopyridines enhance opening of calcium-activated potassium channels in GH3 anterior pituitary cells.
    Rogawski MA
    Mol Pharmacol; 1989 Apr; 35(4):458-68. PubMed ID: 2704369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inwardly rectifying K+ channels in dispersed bovine parathyroid cells.
    McHenry CR; Stenger DB; Kunze DL
    J Surg Res; 1998 Apr; 76(1):37-40. PubMed ID: 9695736
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of ATP-sensitive potassium channels in intestinal, cholecystokinin-secreting cells.
    Basavappa S; Liddle RA; Mangel AW
    Biochem Biophys Res Commun; 1994 Oct; 204(2):855-60. PubMed ID: 7980553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionic mechanism of muscarinic cholinergic depolarization of mouse spinal cord neurons in cell culture.
    Nowak LM; Macdonald RL
    J Neurophysiol; 1983 Mar; 49(3):792-803. PubMed ID: 6834099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca2+ release and activation of K+ and Cl- currents by extracellular ATP in distal nephron epithelial cells.
    Nilius B; Sehrer J; Heinke S; Droogmans G
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C376-84. PubMed ID: 7544529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca(2+) sparks and BK currents in gallbladder myocytes: role in CCK-induced response.
    Pozo MJ; PĂ©rez GJ; Nelson MT; Mawe GM
    Am J Physiol Gastrointest Liver Physiol; 2002 Jan; 282(1):G165-74. PubMed ID: 11751170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.