BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 8333872)

  • 1. The primary structure of phosphofructokinase from Lactococcus lactis.
    Xiao Q; Moore CH
    Biochem Biophys Res Commun; 1993 Jul; 194(1):65-71. PubMed ID: 8333872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion.
    Meinnel T; Lazennec C; Villoing S; Blanquet S
    J Mol Biol; 1997 Apr; 267(3):749-61. PubMed ID: 9126850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal sequence of Lactococcus lactis phosphoglucose isomerase purified by affinity chromatography differs from the other species.
    Nomura M; Nakajima I; Matsuzaki M; Kimoto H; Suzuki I; Aso H
    Arch Biochem Biophys; 1997 May; 341(2):315-20. PubMed ID: 9169021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphofructokinase: complete amino-acid sequence of the enzyme from Bacillus stearothermophilus.
    Kolb E; Hudson PJ; Harris JI
    Eur J Biochem; 1980 Jul; 108(2):587-97. PubMed ID: 6447595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21.
    Kim JE; Jeong DW; Lee HJ
    Protein Expr Purif; 2007 May; 53(1):9-15. PubMed ID: 17223359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the primary structure of L-asparaginase from Thermus thermophilus.
    Pritsa A; Choli-Papadopoulou T; Kyriakidis DA
    J Protein Chem; 1998 Aug; 17(6):548-9. PubMed ID: 9723751
    [No Abstract]   [Full Text] [Related]  

  • 7. The complete primary structure of ribosomal protein L1 from Thermus thermophilus.
    Amons R; Muranova TA; Rykunova AI; Eliseikina IA; Sedelnikova SE
    J Protein Chem; 1993 Dec; 12(6):725-34. PubMed ID: 8136022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rabbit liver phosphofructokinase: rapid purification and phosphorylation site identification.
    Zhao Z; Pascalar RW; Malencik DA; Anderson SR
    Biochem Biophys Res Commun; 1996 May; 222(2):410-5. PubMed ID: 8670219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning of phosphofructokinase 1 gene from a thermophilic bacterium, Thermus thermophilus.
    Xu J; Seki M; Denda K; Yoshida M
    Biochem Biophys Res Commun; 1991 May; 176(3):1313-8. PubMed ID: 1828151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptides inhibitory to endopeptidase and aminopeptidase from Lactococcus lactis ssp. lactis MG1363, released from bovine beta-casein by chymosin, trypsin or chymotrypsin.
    Stepaniak L; Gobbetti M; Sørhaug T; Fox PF; Højrup P
    Z Lebensm Unters Forsch; 1996 Apr; 202(4):329-33. PubMed ID: 8638436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase.
    Wang H; Cronan JE
    Biochemistry; 2004 Sep; 43(37):11782-9. PubMed ID: 15362862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proteolytic pathway of Lactococcus lactis.
    Poolman B; Kunji ER; Hagting A; Juillard V; Konings WN
    Soc Appl Bacteriol Symp Ser; 1995; 24():65S-75S. PubMed ID: 7570167
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The primary structure of Bacillus subtilis acidic ribonsomal protein B-19. Isolation and characterization of peptides and the complete amino acid sequence.
    Itoh T; Wittmann-Liebold B
    J Biochem; 1980 Apr; 87(4):1185-201. PubMed ID: 6771249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, crystallization, and preliminary X-ray analysis of PepX, an X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis.
    Chich JF; Rigolet P; Nardi M; Gripon JC; Ribadeau-Dumas B; Brunie S
    Proteins; 1995 Oct; 23(2):278-81. PubMed ID: 8592708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and production of a novel bacteriocin, lactococcin K, from Lactococcus lactis subsp. lactis MY23.
    Kim YS; Kim MJ; Kim P; Kim JH
    Biotechnol Lett; 2006 Mar; 28(5):357-62. PubMed ID: 16614924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis.
    Sun X; Göhler A; Heller KJ; Neve H
    Virology; 2006 Jun; 350(1):146-57. PubMed ID: 16643978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state.
    Spector S; Rosconi M; Raleigh DP
    Biopolymers; 1999 Jan; 49(1):29-40. PubMed ID: 10070261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoglycerate kinases from bacteria and archaea.
    Crowhurst G; McHarg J; Littlechild JA
    Methods Enzymol; 2001; 331():90-104. PubMed ID: 11265486
    [No Abstract]   [Full Text] [Related]  

  • 20. Study of calcineurin structure by limited proteolysis.
    Yang SA; Klee C
    Methods Mol Biol; 2002; 172():317-34. PubMed ID: 11833358
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.