BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8334132)

  • 1. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis.
    Furter R; Furter-Graves EM; Wallimann T
    Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates.
    Wyss M; James P; Schlegel J; Wallimann T
    Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
    Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ
    Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of active octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli.
    Furter R; Kaldis P; Furter-Graves EM; Schnyder T; Eppenberger HM; Wallimann T
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):771-5. PubMed ID: 1471992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop.
    Forstner M; Müller A; Stolz M; Wallimann T
    Protein Sci; 1997 Feb; 6(2):331-9. PubMed ID: 9041634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity modification of creatine kinase and ATP-ADP translocase in heart mitochondria: determination of their molar stoichiometry.
    Kuznetsov AV; Saks VA
    Biochem Biophys Res Commun; 1986 Jan; 134(1):359-66. PubMed ID: 3004438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits.
    Hornemann T; Rutishauser D; Wallimann T
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):365-73. PubMed ID: 10899637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes of mitochondrial creatine kinase upon binding of ADP, ATP, or Pi, observed by reaction-induced infrared difference spectra.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 Mar; 40(9):2988-94. PubMed ID: 11258911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide binding sites in wild-type creatine kinase and in W227Y mutant probed by photochemical release of nucleotides and infrared difference spectroscopy.
    Raimbault C; Perraut C; Marcillat O; Buchet R; Vial C
    Eur J Biochem; 1997 Dec; 250(3):773-82. PubMed ID: 9461301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation.
    Stachowiak O; Dolder M; Wallimann T; Richter C
    J Biol Chem; 1998 Jul; 273(27):16694-9. PubMed ID: 9642223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional differences between dimeric and octameric mitochondrial creatine kinase.
    Kaldis P; Wallimann T
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):623-7. PubMed ID: 7772050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophosphorylation of creatine kinase: characterization and identification of a specifically phosphorylated peptide.
    Hemmer W; Furter-Graves EM; Frank G; Wallimann T; Furter R
    Biochim Biophys Acta; 1995 Sep; 1251(2):81-90. PubMed ID: 7669815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK).
    Koufen P; Rück A; Brdiczka D; Wendt S; Wallimann T; Stark G
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):413-7. PubMed ID: 10567223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase.
    Wang PF; McLeish MJ; Kneen MM; Lee G; Kenyon GL
    Biochemistry; 2001 Oct; 40(39):11698-705. PubMed ID: 11570870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective labelling and inactivation of creatine kinase isoenzymes by the thyroid hormone derivative N-bromoacetyl-3,3',5-tri-iodo-L-thyronine.
    Wyss M; Wallimann T; Köhrle J
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):463-72. PubMed ID: 8484727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy.
    Raimbault C; Clottes E; Leydier C; Vial C; Buchet R
    Eur J Biochem; 1997 Aug; 247(3):1197-208. PubMed ID: 9288948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.