These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8334136)

  • 1. Characterisation of erythrocyte transmembrane exchange of trifluoroacetate using 19F-NMR: evidence for transport via the monocarboxylate transporter.
    Xu AS; Kuchel PW
    Biochim Biophys Acta; 1993 Jul; 1150(1):35-44. PubMed ID: 8334136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.
    Halestrap AP
    Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS).
    Poole RC; Cranmer SL; Holdup DW; Halestrap AP
    Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water permeability in human erythrocytes: identification of membrane proteins involved in water transport.
    Benga G; Popescu O; Borza V; Pop VI; Muresan A; Mocsy I; Brain A; Wrigglesworth JM
    Eur J Cell Biol; 1986 Aug; 41(2):252-62. PubMed ID: 3019699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoride transmembrane exchange in human erythrocytes measured with 19F NMR magnetization transfer.
    Chapman BE; Kuchel PW
    Eur Biophys J; 1990; 19(1):41-5. PubMed ID: 2269212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of membrane potential and cell volume by 19F NMR using trifluoroacetate and trifluoroacetamide probes.
    London RE; Gabel SA
    Biochemistry; 1989 Mar; 28(6):2378-82. PubMed ID: 2730869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.
    Edlund GL; Halestrap AP
    Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of DTNB to band 3 in the human red cell membrane.
    Toon MR; Dorogi PL; Lukacovic MF; Solomon AK
    Biochim Biophys Acta; 1985 Aug; 818(2):158-70. PubMed ID: 2992587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of red cell urea and water permeability by sulfhydryl reagents.
    Toon MR; Solomon AK
    Biochim Biophys Acta; 1986 Aug; 860(2):361-75. PubMed ID: 3017418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H
    Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of a sulphydryl group essential for sodium exchange diffusion in beef erythrocytes.
    Motais R; Sola F
    J Physiol; 1973 Sep; 233(2):423-38. PubMed ID: 4747235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties.
    Deuticke B; Beyer E; Forst B
    Biochim Biophys Acta; 1982 Jan; 684(1):96-110. PubMed ID: 7055558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pCMBS on anion transport in human red cell membranes.
    Zhang ZH; Solomon AK
    Biochim Biophys Acta; 1992 Apr; 1106(1):31-9. PubMed ID: 1316163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediated transport of anions in band 3-phospholipid vesicles.
    Köhne W; Haest CW; Deuticke B
    Biochim Biophys Acta; 1981 Jun; 644(1):108-20. PubMed ID: 7260063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane Ca2+ gradient is essential for high anion transport activity of human erythrocytes.
    Tu YP; Feng C; Xu H; Guang ZY; Lu QW; Yang FY
    Biosci Rep; 1996 Aug; 16(4):299-311. PubMed ID: 8896789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
    De Bruijne AW; Vreeburg H; Van Steveninck J
    Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of phosphate transport across the human erythrocyte membrane by chemical modification of sulfhydryl groups.
    Yamaguchi T; Kimoto E
    Biochemistry; 1992 Feb; 31(7):1968-73. PubMed ID: 1536838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difluorophosphate as a 19F NMR probe of erythrocyte membrane potential.
    Xu AS; Kuchel PW
    Eur Biophys J; 1991; 19(6):327-34. PubMed ID: 1915159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific interaction of the water transport inhibitor, pCMBS, with band 3 in red blood cell membranes.
    Lukacovic MF; Verkman AS; Dix JA; Solomon AK
    Biochim Biophys Acta; 1984 Dec; 778(2):253-9. PubMed ID: 6093883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.