BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 8335076)

  • 41. Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.
    Razak KA
    J Neurophysiol; 2012 Apr; 107(8):2202-11. PubMed ID: 22279192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectrotemporal sensitivities in rat auditory cortical neurons.
    Orduña I; Mercado E; Gluck MA; Merzenich MM
    Hear Res; 2001 Oct; 160(1-2):47-57. PubMed ID: 11591490
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping responses to frequency sweeps and tones in the inferior colliculus of house mice.
    Hage SR; Ehret G
    Eur J Neurosci; 2003 Oct; 18(8):2301-12. PubMed ID: 14622191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex.
    Ehret G; Schreiner CE
    J Comp Physiol A; 1997 Dec; 181(6):635-50. PubMed ID: 9449823
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Topography and synaptic shaping of direction selectivity in primary auditory cortex.
    Zhang LI; Tan AY; Schreiner CE; Merzenich MM
    Nature; 2003 Jul; 424(6945):201-5. PubMed ID: 12853959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Level-dependent representation of stimulus frequency in cat primary auditory cortex.
    Phillips DP; Semple MN; Calford MB; Kitzes LM
    Exp Brain Res; 1994; 102(2):210-26. PubMed ID: 7705501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Topography of binaural organization in primary auditory cortex of the cat: effects of changing interaural intensity.
    Reale RA; Kettner RE
    J Neurophysiol; 1986 Sep; 56(3):663-82. PubMed ID: 3783214
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pulsed noise experience disrupts complex sound representations.
    Insanally MN; Albanna BF; Bao S
    J Neurophysiol; 2010 May; 103(5):2611-7. PubMed ID: 20200123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of inhibitory mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.
    Razak KA; Fuzessery ZM
    J Neurosci; 2007 Feb; 27(7):1769-81. PubMed ID: 17301184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frequency organization of delay-sensitive neurons in the auditory cortex of the FM bat, Myotis lucifugus.
    Paschal WG; Wong D
    J Neurophysiol; 1994 Jul; 72(1):366-79. PubMed ID: 7965020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional organization of the primary auditory cortex of the free-tailed bat Tadarida brasiliensis.
    Macias S; Bakshi K; Smotherman M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 May; 206(3):429-440. PubMed ID: 32036404
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiscale mapping of frequency sweep rate in mouse auditory cortex.
    Issa JB; Haeffele BD; Young ED; Yue DT
    Hear Res; 2017 Feb; 344():207-222. PubMed ID: 28011084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altered cortical spectrotemporal processing with age-related hearing loss.
    Trujillo M; Razak KA
    J Neurophysiol; 2013 Dec; 110(12):2873-86. PubMed ID: 24068755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields.
    Thomas H; Tillein J; Heil P; Scheich H
    Eur J Neurosci; 1993 Jul; 5(7):882-97. PubMed ID: 8281300
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response properties underlying selectivity for the rate of frequency modulated sweeps in the auditory cortex of the mouse.
    Trujillo M; Carrasco MM; Razak K
    Hear Res; 2013 Apr; 298():80-92. PubMed ID: 23340378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facilitatory mechanisms underlying selectivity for the direction and rate of frequency modulated sweeps in the auditory cortex.
    Razak KA; Fuzessery ZM
    J Neurosci; 2008 Sep; 28(39):9806-16. PubMed ID: 18815265
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat,
    Measor KR; Leavell BC; Brewton DH; Rumschlag J; Barber JR; Razak KA
    eNeuro; 2017; 4(1):. PubMed ID: 28275715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose.
    Scheich H; Heil P; Langner G
    Eur J Neurosci; 1993 Jul; 5(7):898-914. PubMed ID: 8281301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repetition of complex frequency-modulated sweeps enhances neuromagnetic responses in the human auditory cortex.
    Altmann CF; Klein C; Heinemann LV; Wibral M; Gaese BH; Kaiser J
    Hear Res; 2011 Dec; 282(1-2):216-24. PubMed ID: 21839158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.