These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes. Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486 [TBL] [Abstract][Full Text] [Related]
29. Characterization of a sodium-dependent transport system for butyrobetaine into rat liver plasma membrane vesicles. Berardi S; Stieger B; Wachter S; O'Neill B; Krahenbühl S Hepatology; 1998 Aug; 28(2):521-5. PubMed ID: 9696019 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the defect in the Na(+)-phosphate transporter in vitamin D-resistant hypophosphatemic mice. Nakagawa N; Arab N; Ghishan FK J Biol Chem; 1991 Jul; 266(21):13616-20. PubMed ID: 1649826 [TBL] [Abstract][Full Text] [Related]
31. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923 [TBL] [Abstract][Full Text] [Related]
32. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Miyamoto K; Tatsumi S; Sonoda T; Yamamoto H; Minami H; Taketani Y; Takeda E Biochem J; 1995 Jan; 305 ( Pt 1)(Pt 1):81-5. PubMed ID: 7826357 [TBL] [Abstract][Full Text] [Related]
33. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles. Moseley RH; Meier PJ; Aronson PS; Boyer JL Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192 [TBL] [Abstract][Full Text] [Related]
34. An Na(+)-dependent and an Na(+)-independent system for glutamine transport in rat liver basolateral membrane vesicles. Said HM; Hollander D; Khorchid S Gastroenterology; 1991 Oct; 101(4):1094-101. PubMed ID: 1889703 [TBL] [Abstract][Full Text] [Related]
35. Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. Werner A; Biber J; Forgo J; Palacin M; Murer H J Biol Chem; 1990 Jul; 265(21):12331-6. PubMed ID: 1695629 [TBL] [Abstract][Full Text] [Related]
36. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952 [TBL] [Abstract][Full Text] [Related]
37. Expression of rat ileal Na(+)-sulphate cotransport in Xenopus laevis oocytes: functional characterization. Perego C; Markovich D; Norbis F; Verri T; Sorribas V; Murer H Pflugers Arch; 1994 Jun; 427(3-4):252-6. PubMed ID: 8072843 [TBL] [Abstract][Full Text] [Related]
38. Expression of the Na+ dependent uridine transport system of rabbit small intestine: studies with mRNA-injected Xenopus laevis oocytes. Terasaki T; Kadowaki A; Higashida H; Nakayama K; Tamai I; Tsuji A Biol Pharm Bull; 1993 May; 16(5):493-6. PubMed ID: 8364497 [TBL] [Abstract][Full Text] [Related]
39. Expression of a rat renal sodium-dependent dicarboxylate transporter in Xenopus oocytes. Steffgen J; Kienle S; Scheyerl F; Franz HE Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):35-9. PubMed ID: 8280108 [TBL] [Abstract][Full Text] [Related]
40. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2). Xu H; Bai L; Collins JF; Ghishan FK Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]