These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 8335620)
1. Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. Slack FJ; Mueller JP; Sonenshein AL J Bacteriol; 1993 Aug; 175(15):4605-14. PubMed ID: 8335620 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Slack FJ; Mueller JP; Strauch MA; Mathiopoulos C; Sonenshein AL Mol Microbiol; 1991 Aug; 5(8):1915-25. PubMed ID: 1766371 [TBL] [Abstract][Full Text] [Related]
3. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mathiopoulos C; Mueller JP; Slack FJ; Murphy CG; Patankar S; Bukusoglu G; Sonenshein AL Mol Microbiol; 1991 Aug; 5(8):1903-13. PubMed ID: 1766370 [TBL] [Abstract][Full Text] [Related]
4. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Slack FJ; Serror P; Joyce E; Sonenshein AL Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641 [TBL] [Abstract][Full Text] [Related]
5. Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Perego M; Spiegelman GB; Hoch JA Mol Microbiol; 1988 Nov; 2(6):689-99. PubMed ID: 3145384 [TBL] [Abstract][Full Text] [Related]
6. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. O'Reilly M; Woodson K; Dowds BC; Devine KM Mol Microbiol; 1994 Jan; 11(1):87-98. PubMed ID: 7511775 [TBL] [Abstract][Full Text] [Related]
7. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. Fisher SH; Strauch MA; Atkinson MR; Wray LV J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456 [TBL] [Abstract][Full Text] [Related]
8. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. Wray LV; Ferson AE; Fisher SH J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005 [TBL] [Abstract][Full Text] [Related]
9. AbrB modulates expression and catabolite repression of a Bacillus subtilis ribose transport operon. Strauch MA J Bacteriol; 1995 Dec; 177(23):6727-31. PubMed ID: 7592460 [TBL] [Abstract][Full Text] [Related]
10. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. Christiansen LC; Schou S; Nygaard P; Saxild HH J Bacteriol; 1997 Apr; 179(8):2540-50. PubMed ID: 9098051 [TBL] [Abstract][Full Text] [Related]
11. Regulation of Bacillus subtilis sigmaH (spo0H) and AbrB in response to changes in external pH. Cosby WM; Zuber P J Bacteriol; 1997 Nov; 179(21):6778-87. PubMed ID: 9352930 [TBL] [Abstract][Full Text] [Related]
12. Role of CodY in regulation of the Bacillus subtilis hut operon. Fisher SH; Rohrer K; Ferson AE J Bacteriol; 1996 Jul; 178(13):3779-84. PubMed ID: 8682780 [TBL] [Abstract][Full Text] [Related]
13. Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. Saxild HH; Andersen LN; Hammer K J Bacteriol; 1996 Jan; 178(2):424-34. PubMed ID: 8550462 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the upstream activating sequence and site of carbon and nitrogen source repression in the promoter of an early-induced sporulation gene of Bacillus subtilis. Frisby D; Zuber P J Bacteriol; 1991 Dec; 173(23):7557-64. PubMed ID: 1938951 [TBL] [Abstract][Full Text] [Related]
15. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. Wise AA; Price CW J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610 [TBL] [Abstract][Full Text] [Related]
16. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Robertson JB; Gocht M; Marahiel MA; Zuber P Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8457-61. PubMed ID: 2554317 [TBL] [Abstract][Full Text] [Related]
17. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174 [TBL] [Abstract][Full Text] [Related]
18. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. Mueller JP; Bukusoglu G; Sonenshein AL J Bacteriol; 1992 Jul; 174(13):4361-73. PubMed ID: 1378051 [TBL] [Abstract][Full Text] [Related]
20. The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Yamamoto H; Murata M; Sekiguchi J Mol Microbiol; 2000 Aug; 37(4):898-912. PubMed ID: 10972810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]