These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 833565)

  • 41. Laminar separation of light-evoked K+ flux and field potentials in frog retina.
    Karwoski J; Criswell MH; Proenza LM
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):678-82. PubMed ID: 669896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina.
    Frishman LJ; Yamamoto F; Bogucka J; Steinberg RH
    J Neurophysiol; 1992 May; 67(5):1201-12. PubMed ID: 1317916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transient adaptation and sensitization in the retina of Necturus.
    Karwoski CJ; Proenza LM
    J Gen Physiol; 1980 Oct; 76(4):479-97. PubMed ID: 7441193
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents.
    Qian H; Li L; Chappell RL; Ripps H
    J Neurophysiol; 1997 Nov; 78(5):2402-12. PubMed ID: 9356392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectral analysis of L-type S-potentials and their relation to photopigment absorption in a fish (Eugerres plumieri) retina.
    Laufer M; Millán E
    Vision Res; 1970 Mar; 10(3):237-51. PubMed ID: 5453513
    [No Abstract]   [Full Text] [Related]  

  • 47. [The non-synaptic membrane of the retinal horizontal cells as an amplifier of slow potentials].
    Byzov AL; Trifonov IuA; Chailakhian LM
    Neirofiziologiia; 1975; 7(1):74-83. PubMed ID: 1239669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signal transmission from cones to amacrine cells in dark- and light-adapted tiger salamander retina.
    Yang XL; Wu SM
    Brain Res; 2004 Dec; 1029(2):155-61. PubMed ID: 15542069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cells.
    Wang GY
    Vis Neurosci; 2006; 23(1):127-35. PubMed ID: 16597356
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons.
    Frumkes TE; Wu SM
    J Neurophysiol; 1990 Sep; 64(3):1043-54. PubMed ID: 2230916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pharmacology of the skate electroretinogram indicates independent ON and OFF bipolar cell pathways.
    Chappell RL; Rosenstein FJ
    J Gen Physiol; 1996 Apr; 107(4):535-44. PubMed ID: 8722565
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light adaptation increases response latency of alpha ganglion cells via a threshold-like nonlinearity.
    Chang L; He S
    Neuroscience; 2014 Jan; 256():101-16. PubMed ID: 24144626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Common features of light-evoked amacrine cell responses in vertebrate retina.
    Djamgoz MB
    Neurosci Lett; 1986 Nov; 71(2):187-91. PubMed ID: 3785744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amacrine cells in scotopic vision.
    Nelson R; Kolb H
    Ophthalmic Res; 1984; 16(1-2):21-6. PubMed ID: 6728421
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retinal receptor potentials and their linear relationship to light intensity.
    FATEHCHAND R; LAUFER M; SVAETICHIN G
    Science; 1962 Aug; 137(3531):666-8. PubMed ID: 13891769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Receptive field properties of rod-driven horizontal cells in the skate retina.
    Qian H; Ripps H
    J Gen Physiol; 1992 Sep; 100(3):457-78. PubMed ID: 1359000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retinal cross talk in the mammalian visual system.
    Tang X; Tzekov R; Passaglia CL
    J Neurophysiol; 2016 Jun; 115(6):3018-29. PubMed ID: 26984426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptation-related changes in the spatial and temporal summation of frog retinal ganglion cells.
    Donner K
    Acta Physiol Scand; 1987 Dec; 131(4):479-87. PubMed ID: 3502059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The retinal dopamine network alters the adaptational properties of retinal ganglion cells in the cat.
    Maguire G; Hamasaki DI
    J Neurophysiol; 1994 Aug; 72(2):730-41. PubMed ID: 7983531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptation in the isolated rat retina.
    Weinstein GW; Hobson RR
    Nature; 1970 Aug; 227(5261):957-9. PubMed ID: 5449003
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.