BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 833597)

  • 1. Transmitter synthesizing enzymes in the hypoglossal nucleus and cerebellum--effect of acetylpyridine and surgical lesions.
    Gottesfeld Z; Fonnum F
    J Neurochem; 1977 Jan; 28(1):237-9. PubMed ID: 833597
    [No Abstract]   [Full Text] [Related]  

  • 2. Localization of glutamate decarboxylase, choline acetyltransferase, and DOPA decarboxylase in mesolimbic structures.
    Fonnum F; Iversen E; Walaas I
    Adv Biochem Psychopharmacol; 1977; 16():417-21. PubMed ID: 302083
    [No Abstract]   [Full Text] [Related]  

  • 3. Selective vulnerability of neurones in organic dementia.
    Spillane JA; White P; Goodhardt WJ; Flack RH; Bowen DM; Davison AN
    Nature; 1977 Apr; 266(5602):558-9. PubMed ID: 859623
    [No Abstract]   [Full Text] [Related]  

  • 4. Distribution of choline acetyltransferase and glutamate decarboxylase within the substantia nigra and in other brain regions from control and Parkinsonian patients.
    Lloyd KG; Möhler H; Heitz P; Bartholini G
    J Neurochem; 1975 Dec; 25(6):789-95. PubMed ID: 1206397
    [No Abstract]   [Full Text] [Related]  

  • 5. Developmental changes in activity of choline acetyltransferase, acetyl-cholinesterase and glutamic acid decarboxylase in the central nervous system of the toad. Xenopus laevis.
    Loh YP
    J Neurochem; 1976 Jun; 26(6):1303-5. PubMed ID: 932736
    [No Abstract]   [Full Text] [Related]  

  • 6. Choline acetyltransferase, glutamate decarboxylase and tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig.
    Fex J; Wenthold RJ
    Brain Res; 1976 Jun; 109(3):575-85. PubMed ID: 6125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of undernutrition on the regional development of transmitter enzymes: glutamate decarboxylase and choline acetyltransferase.
    Patel AJ; del Vecchio M; Atkinson DJ
    Dev Neurosci; 1978; 1(1):41-53. PubMed ID: 755680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of a circadian fluctuation in neurotransmitter enzyme activities measured in autopsy human brain.
    Perry EK; Perry RH; Taylor MJ; Tomlinson BE
    J Neurochem; 1977 Sep; 29(3):593-4. PubMed ID: 894312
    [No Abstract]   [Full Text] [Related]  

  • 9. Interpeduncular nucleus: differential effects of habenula lesions on choline acetyltransferase and glutamic acid decarboxylase.
    Mata MM; Schrier BK; Moore RY
    Exp Neurol; 1977 Dec; 57(3):913-21. PubMed ID: 923681
    [No Abstract]   [Full Text] [Related]  

  • 10. The distribution of catecholamines, glutamate decarboxylase and choline acetyltransferase in layers of the rat olfactory bulb.
    Jaffé EH; Cuello AC
    Brain Res; 1980 Mar; 186(1):232-7. PubMed ID: 7357447
    [No Abstract]   [Full Text] [Related]  

  • 11. Regional distribution of neurotransmitter synthesizing enzymes in the basal ganglia of human brain.
    Gaspar P; Javoy-Agid F; Ploska A; Agid Y
    J Neurochem; 1980 Feb; 34(2):278-83. PubMed ID: 6106047
    [No Abstract]   [Full Text] [Related]  

  • 12. Immunocytochemistry of glutamate decarboxylase in the deafferented habenula.
    Gottesfeld Z; Brandon C; Wu JY
    Brain Res; 1981 Mar; 208(1):181-6. PubMed ID: 7008902
    [No Abstract]   [Full Text] [Related]  

  • 13. The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities.
    Hotchkiss AJ; Morgan ME; Gibb JW
    Life Sci; 1979 Oct; 25(16):1373-8. PubMed ID: 42834
    [No Abstract]   [Full Text] [Related]  

  • 14. Transneuronal effects of olfactory bulb removal on choline acetyltransferase and glutamic acid decarboxylase activities in the olfactory tubercle.
    Gilad GM; Reis DJ
    Brain Res; 1979 Dec; 178(1):185-90. PubMed ID: 497860
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of repeated immobilization stress on glutamate decarboxylase and choline acetyltransferase in discrete brain regions.
    Gottesfeld Z; Kvetnanský R; Kopin IJ; Jacobowitz DM
    Brain Res; 1978 Aug; 152(2):374-8. PubMed ID: 567089
    [No Abstract]   [Full Text] [Related]  

  • 16. The activities of glutamic acid decarboxylase and choline acetyltransferase in post-mortem brains of schizophrenics and controls [proceedings].
    Cross AJ; Owen F
    Biochem Soc Trans; 1979 Feb; 7(1):145-6. PubMed ID: 437260
    [No Abstract]   [Full Text] [Related]  

  • 17. Nerve growth factor-mediated differentiation of a nerve cell line cultured in a hormone-supplemented serum-free medium.
    Hatanaka H
    Brain Res; 1983 Feb; 282(3):243-50. PubMed ID: 6831247
    [No Abstract]   [Full Text] [Related]  

  • 18. Innervation of hypothalamic and limbic areas by the cholinergic, the GABA-ergic and the catecholaminergic nerve fibers; a quantitative analysis.
    Kataoka K; Sorimachi M; Okuno S; Mizuno N
    Pharmacol Biochem Behav; 1975; 3(1 Suppl):61-73. PubMed ID: 1226400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apomorphine and cerebellar GAD activity.
    Patti F; Giammona G; Nicoletti F; Condorelli DF; Rampello L; Reggio A; Di Giorgio RM
    Acta Neurol (Napoli); 1981 Aug; 3(4):599-601. PubMed ID: 7304291
    [No Abstract]   [Full Text] [Related]  

  • 20. Kernicterus: effect on choline acetyltransferase, glutamic acid decarboxylase and tyrosine hydroxylase activities in the brain of the Gunn rat.
    Ohno T
    Brain Res; 1980 Aug; 196(1):282-5. PubMed ID: 6105009
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.