These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8336104)

  • 1. Bacterial metabolism of 5-aminosalicylic acid: enzymic conversion to L-malate, pyruvate and ammonia.
    Stolz A; Knackmuss HJ
    J Gen Microbiol; 1993 May; 139(5):1019-25. PubMed ID: 8336104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage.
    Stolz A; Nörtemann B; Knackmuss HJ
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):675-80. PubMed ID: 1554350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism.
    Zhou NY; Fuenmayor SL; Williams PA
    J Bacteriol; 2001 Jan; 183(2):700-8. PubMed ID: 11133965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The enzymic degradation of alkyl-substituted gentisates, maleates and malates.
    Hopper DJ; Chapman PJ; Dagley S
    Biochem J; 1971 Mar; 122(1):29-40. PubMed ID: 5124802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of the metabolism of dicarboxylic acids and of pyruvate in sulfo-reducing bacteria. I. Study of the enzyme oxidation of fumarate in acetate].
    Hatchikian EC; Le Gall J
    Ann Inst Pasteur (Paris); 1970 Feb; 118(2):125-42. PubMed ID: 4392009
    [No Abstract]   [Full Text] [Related]  

  • 6. Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates.
    Nörtemann B; Baumgarten J; Rast HG; Knackmuss HJ
    Appl Environ Microbiol; 1986 Nov; 52(5):1195-202. PubMed ID: 3789715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of a wild strain and of a pimelic acid-utilizing mutant of Pseudomonas azelaica on aliphatic dicarboxylic acids.
    Janota-Bassalik L; Bohdanowicz-Strucińska B
    J Gen Microbiol; 1974 Sep; 84(1):79-84. PubMed ID: 4436649
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymic formation of citramalate from acetyl-coenzyme A and pyruvate in Pseudomonas ovalis Chester, catalysed by "pyruvate transacetase".
    GRAY CT; KORNBERG HL
    Biochim Biophys Acta; 1960 Aug; 42():371-2. PubMed ID: 13708034
    [No Abstract]   [Full Text] [Related]  

  • 9. Structure of bacterial glutathione-S-transferase maleyl pyruvate isomerase and implications for mechanism of isomerisation.
    Marsh M; Shoemark DK; Jacob A; Robinson C; Cahill B; Zhou NY; Williams PA; Hadfield AT
    J Mol Biol; 2008 Dec; 384(1):165-77. PubMed ID: 18824004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dissimilation of higher dicarboxylic acids by Pseudomonas fluorscens.
    Hoet PP; Stanier RY
    Eur J Biochem; 1970 Mar; 13(1):65-70. PubMed ID: 4314711
    [No Abstract]   [Full Text] [Related]  

  • 11. [Catabolism of longer dicarboxylic acids in Pseudomonas fluorescens].
    Hoet P; Wiame JM
    Arch Int Physiol Biochim; 1969 Dec; 77(5):968-9. PubMed ID: 4190900
    [No Abstract]   [Full Text] [Related]  

  • 12. Aerobic biodegradation of 3-aminobenzoate by gram-negative bacteria involves intermediate formation of 5-aminosalicylate as ring-cleavage substrate.
    Russ R; Müller C; Knackmuss HJ; Stolz A
    FEMS Microbiol Lett; 1994 Sep; 122(1-2):137-43. PubMed ID: 7958765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of 2,4-dihydroxybenzoate by Pseudomonas sp. BN9.
    Stolz A; Knackmuss HJ
    FEMS Microbiol Lett; 1993 Apr; 108(2):219-24. PubMed ID: 8486246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.
    Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF
    Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex in Hyphomicrobium sp.
    Harder W; Matin A; Attwood MM
    J Gen Microbiol; 1975 Feb; 86(2):319-26. PubMed ID: 1113081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038.
    Liu TT; Xu Y; Liu H; Luo S; Yin YJ; Liu SJ; Zhou NY
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):671-8. PubMed ID: 21181154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.
    Fan CL; Rodwell VW
    J Bacteriol; 1975 Dec; 124(3):1302-11. PubMed ID: 1194237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isolation of strain Pseudomonas sp. ASA2 from a methanogenic community degrading aminobenzoate and aminosalicylate].
    Savel'eva OV; Kotova IB; Skliar VI; Kaliuzhnyĭ SV; Netrusov AI
    Mikrobiologiia; 2002; 71(2):281-2. PubMed ID: 12024833
    [No Abstract]   [Full Text] [Related]  

  • 19. The metabolism of lactate and pyruvate by Pseudomonas AM1.
    Salem AR; Wagner C; Hacking AJ; Quayle JR
    J Gen Microbiol; 1973 Jun; 76(2):375-88. PubMed ID: 4723074
    [No Abstract]   [Full Text] [Related]  

  • 20. PIMELIC ACID AS A BY-PRODUCT OF AZELAIC ACID DEGRADATION BY PSEUDOMONAS SP.
    JANOTA-BASSALIK L; WRIGHT LD
    Nature; 1964 Oct; 204():501-2. PubMed ID: 14232556
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.