These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8336104)

  • 21. Enzymic cis-trans isomerization of maleylpyruvic acid.
    LACK L
    J Biol Chem; 1961 Nov; 236():2835-40. PubMed ID: 14461395
    [No Abstract]   [Full Text] [Related]  

  • 22. Metabolism of ethylmalic acids by Pseudomonas aeruginosa.
    Rabin R; Salamon II; Bleiweis AS; Carlin J; Ajl SJ
    Biochemistry; 1968 Jan; 7(1):377-88. PubMed ID: 4320440
    [No Abstract]   [Full Text] [Related]  

  • 23. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 24. [Biochemistry and genetics of organic acid transport in bacteria].
    Gershanovich VN
    Usp Sovrem Biol; 1975; 79(1):21-32. PubMed ID: 804772
    [No Abstract]   [Full Text] [Related]  

  • 25. Keto acid metabolism in Desulfovibrio.
    Lewis AJ; Miller JD
    J Gen Microbiol; 1975 Oct; 90(2):286-92. PubMed ID: 1194893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of biotin-vitamers from pimelic acid and coenzyme A by cell-free extracts of various bacteria.
    Izumi Y; Morita H; Sato K; Tani Y; Ogata K
    Biochim Biophys Acta; 1972 Mar; 264(1):210-3. PubMed ID: 4623286
    [No Abstract]   [Full Text] [Related]  

  • 27. [Comparative characteristics of the transport systems of C4-dicarboxylic acids in cultures of the genera Halobacterium and Halococcus].
    Zviagintseva IS; Tarasov AL; Plakunov VK
    Mikrobiologiia; 1984; 53(3):520-4. PubMed ID: 6748976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of Pseudomonas fluorescens with sodium maleate as a carbon source.
    Perry JT; Edwards VH
    Appl Microbiol; 1970 Nov; 20(5):710-4. PubMed ID: 4922080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tartaric acid metabolism. 3. The formation of glyceric acid.
    Kohn LD; Jakoby WB
    J Biol Chem; 1968 May; 243(10):2465-71. PubMed ID: 4297259
    [No Abstract]   [Full Text] [Related]  

  • 30. On the mechanism of gluconeogenesis and its regulation. II. The mechanism of gluconeogenesis from pyruvate and fumarate.
    Seubert W; Huth W
    Biochem Z; 1965 Nov; 343(2):176-91. PubMed ID: 5876062
    [No Abstract]   [Full Text] [Related]  

  • 31. Initial reactions of xanthone biodegradation by an Arthrobacter sp.
    Tomasek PH; Crawford RL
    J Bacteriol; 1986 Sep; 167(3):818-27. PubMed ID: 3745120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Substrate permeation into mitochondria with special attention to the permeation of pyruvate].
    Klingenberg M
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):275-7. PubMed ID: 5420684
    [No Abstract]   [Full Text] [Related]  

  • 33. Carbon isotope fractionation during cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida.
    Heipieper HJ; Neumann G; Kabelitz N; Kastner M; Richnow HH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):285-90. PubMed ID: 15480634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a Specific Maleate Hydratase in the Direct Hydrolysis Route of the Gentisate Pathway.
    Liu K; Xu Y; Zhou NY
    Appl Environ Microbiol; 2015 Sep; 81(17):5753-60. PubMed ID: 26070679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of alpha-beta-diaminopropionate in a Pseudomonas sp.
    Rao DR; Vijayalakshimi KR; Hariharan K
    Biochem J; 1970 Aug; 119(1):113-5. PubMed ID: 5485745
    [No Abstract]   [Full Text] [Related]  

  • 36. HbzF catalyzes direct hydrolysis of maleylpyruvate in the gentisate pathway of Pseudomonas alcaligenes NCIMB 9867.
    Liu K; Liu TT; Zhou NY
    Appl Environ Microbiol; 2013 Feb; 79(3):1044-7. PubMed ID: 23204427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates.
    Schmidt E; Remberg G; Knackmuss HJ
    Biochem J; 1980 Oct; 192(1):331-7. PubMed ID: 7305905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uptake of pimelic acid by Escherichia coli and Pseudomonas denitrificans.
    Pai CH; McLaughlin GE
    Can J Microbiol; 1969 Jul; 15(7):809-10. PubMed ID: 4894285
    [No Abstract]   [Full Text] [Related]  

  • 39. THE BACTERIAL DEGRADATION OF CATECHOL.
    DAGLEY S; GIBSON DT
    Biochem J; 1965 May; 95(2):466-74. PubMed ID: 14340096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The bacterial degradation of flavonoids. Oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp.
    Jeffrey AM; Jerina DM; Self R; Evans WC
    Biochem J; 1972 Nov; 130(2):383-90. PubMed ID: 4198081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.