These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8336168)

  • 41. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum.
    Sugihara I; Lang EJ; Llinás R
    J Physiol; 1993 Oct; 470():243-71. PubMed ID: 8308729
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction between mossy fibre and climbing fibre responses in Purkinje cells.
    Campbell NC; Ekerot CF; Hesslow G; Oscarsson O
    Acta Morphol Hung; 1983; 31(1-3):181-92. PubMed ID: 6414257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mossy and climbing fibre mediated responses evoked in the cerebellar cortex of the cat by trigeminal afferent stimulation.
    Cody FW; Richardson HC
    J Physiol; 1979 Feb; 287():1-14. PubMed ID: 430382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for synaptic plasticity in the cerebellar cortex.
    Ito M
    Acta Morphol Hung; 1983; 31(1-3):213-8. PubMed ID: 6312772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrophysiology of the mammalian cerebellar cortex in organ culture.
    Kapoor R; Jaeger CB; Llinás R
    Neuroscience; 1988 Aug; 26(2):493-507. PubMed ID: 3173687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses of cerebellar cortex to electrical stimulation of the glossopharyngeal nerve in the frog.
    Hanamori T; Nakashima M; Ishiko N
    Neurosci Lett; 1986 Aug; 68(3):345-50. PubMed ID: 3489206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. State-dependent modification of complex spike waveforms in the cerebellar cortex.
    Tal Z; Chorev E; Yarom Y
    Cerebellum; 2008; 7(4):577-82. PubMed ID: 18931886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex.
    Bower JM; Woolston DC
    J Neurophysiol; 1983 Mar; 49(3):745-66. PubMed ID: 6300353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discharge patterns of Purkinje cells activated through the climbing fiber system by stimulation of somatic and visceral afferents.
    Rubia FJ; Hennemann HE
    Pflugers Arch; 1978 Jul; 375(2):125-9. PubMed ID: 567782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit.
    Barmack NH; Shojaku H
    Neuroscience; 1992 Sep; 50(1):1-5. PubMed ID: 1407553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mossy and climbing fiber inputs from cutaneous mechanoreceptors to cerebellar Purkynĕ cells in unanesthetized cats.
    Leicht R; Rowe MJ; Schmidt RF
    Exp Brain Res; 1977 Apr; 27(5):459-77. PubMed ID: 856617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophysiological characteristics of cells in the anterior caudal lobe of the mormyrid cerebellum.
    Zhang Y; Magnus G; Han VZ
    Neuroscience; 2010 Nov; 171(1):79-91. PubMed ID: 20732390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Stimulation of the dorsal raphe nucleus induced depressive effect on cerebellar Purkinje cell responses to mossy and climbing fiber afferent inputs in rat].
    Wang JJ; Xiao YP; Dong MR; Zhang J; Chen J; Yu QX
    Sheng Li Xue Bao; 1991 Dec; 43(6):519-29. PubMed ID: 1796316
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of spontaneous and evoked electrical activity of cerebellum in tissue culture.
    Seil FJ; Leiman AL
    Exp Neurol; 1979 Apr; 64(1):61-75. PubMed ID: 428499
    [No Abstract]   [Full Text] [Related]  

  • 56. Central regulation of cerebellar climbing fibre input during motor learning.
    Apps R; Lee S
    J Physiol; 2002 May; 541(Pt 1):301-17. PubMed ID: 12015437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens.
    Takeda T; Maekawa K
    Neuroscience; 1989; 32(1):99-111. PubMed ID: 2586754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
    Miyakawa H; Lev-Ram V; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1178-89. PubMed ID: 1359027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum.
    Crepel F; Mariani J; Delhaye-Bouchaud N
    J Neurobiol; 1976 Nov; 7(6):567-78. PubMed ID: 1003202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation.
    Barmack NH; Shojaku H
    J Neurophysiol; 1995 Dec; 74(6):2573-89. PubMed ID: 8747215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.