These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8336243)

  • 1. Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements.
    Matko J; Jenei A; Matyus L; Ameloot M; Damjanovich S
    J Photochem Photobiol B; 1993 Jun; 19(1):69-73. PubMed ID: 8336243
    [No Abstract]   [Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions.
    Mátyus L
    J Photochem Photobiol B; 1992 Mar; 12(4):323-37. PubMed ID: 1578295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer.
    Dewey TG; Datta MM
    Biophys J; 1989 Aug; 56(2):415-20. PubMed ID: 2528385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics.
    Young RM; Arnette JK; Roess DA; Barisas BG
    Biophys J; 1994 Aug; 67(2):881-8. PubMed ID: 7948701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of lipid-protein interactions as determined by spectroscopic techniques.
    Devaux PF; Seigneuret M
    Biochim Biophys Acta; 1985 Jun; 822(1):63-125. PubMed ID: 2988624
    [No Abstract]   [Full Text] [Related]  

  • 6. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface.
    Bene L; Gralle M; Damjanovich L
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism.
    Ha T; Ting AY; Liang J; Caldwell WB; Deniz AA; Chemla DS; Schultz PG; Weiss S
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):893-8. PubMed ID: 9927664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved fluorescence spectroscopy of NADPH-cytochrome P-450 reductase: demonstration of energy transfer between the two prosthetic groups.
    Bastiaens PI; Bonants PJ; Müller F; Visser AJ
    Biochemistry; 1989 Oct; 28(21):8416-25. PubMed ID: 2513878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of photosynthetic membranes and the degree of fluorescence polarization.
    Becker JF; Breton J; Geacintov NE; Trentacosti F
    Biochim Biophys Acta; 1976 Sep; 440(3):531-44. PubMed ID: 963043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study.
    Bastiaens PI; van Hoek A; Benen JA; Brochon JC; Visser AJ
    Biophys J; 1992 Sep; 63(3):839-53. PubMed ID: 1420917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsional dynamics and orientation of DNA--DAPI complexes.
    Barcellona ML; Gratton E
    Biochemistry; 1996 Jan; 35(1):321-33. PubMed ID: 8555192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alphas and taus of tryptophan fluorescence in membranes.
    Ladokhin AS; White SH
    Biophys J; 2001 Sep; 81(3):1825-7. PubMed ID: 11525196
    [No Abstract]   [Full Text] [Related]  

  • 13. Designing matrix models for fluorescence energy transfer between moving donors and acceptors.
    van der Meer BW; Raymer MA; Wagoner SL; Hackney RL; Beechem JM; Gratton E
    Biophys J; 1993 Apr; 64(4):1243-63. PubMed ID: 8494980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis.
    Clegg RM; Murchie AI; Lilley DM
    Biophys J; 1994 Jan; 66(1):99-109. PubMed ID: 8130350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence energy transfer between ionophore, A23187, and membrane proteins of isolated outer and cytoplasmic membranes of a Gram-negative bacterium.
    Hyono A; Kuriyama S; Masui M
    Biochim Biophys Acta; 1985 Feb; 813(1):111-6. PubMed ID: 3918563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The histrionicotoxin-sensitive ethidium binding site is located outside of the transmembrane domain of the nicotinic acetylcholine receptor: a fluorescence study.
    Johnson DA; Nuss JM
    Biochemistry; 1994 Aug; 33(31):9070-7. PubMed ID: 8049208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence energy transfer measurements of distances in rhodopsin and the purple membrane protein.
    Stryer L; Thomas DD; Carlsen WF
    Methods Enzymol; 1982; 81():668-78. PubMed ID: 7098907
    [No Abstract]   [Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer.
    Selvin PR
    Methods Enzymol; 1995; 246():300-34. PubMed ID: 7752929
    [No Abstract]   [Full Text] [Related]  

  • 19. Diffusion-modulated energy transfer and quenching: analysis by numerical integration of diffusion equation in laplace space.
    Kuśba J; Lakowicz JR
    Methods Enzymol; 1994; 240():216-62. PubMed ID: 7823833
    [No Abstract]   [Full Text] [Related]  

  • 20. Fluorescence energy transfer from diphenylhexatriene to bacteriorhodopsin in lipid vesicles.
    Rehorek M; Dencher NA; Heyn MP
    Biophys J; 1983 Jul; 43(1):39-45. PubMed ID: 6882861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.