These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 83365)

  • 1. l/f noise in black lipid membranes induced by ionic channels formed by chemically dimerized gramicidin A.
    Sauvé R; Bamberg E
    J Membr Biol; 1978 Nov; 43(4):317-33. PubMed ID: 83365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weak nonlinearity of current-voltage characteristics of gramicidin D channels. Experiment, theory and application to the study of transmembrane transmission of information.
    Passechnik VI; Hianik T
    Gen Physiol Biophys; 1998 Mar; 17(1):51-69. PubMed ID: 9675556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of ionic channels in black lipid membranes by succinic derivatives of gramicidin A.
    Bamberg E; Alpes H; Apell HJ; Bradley R; Härter B; Quelle MJ; Urry DW
    J Membr Biol; 1979 Nov; 50(3-4):257-70. PubMed ID: 92569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation analysis of electrical noise in lipid bilayer membranes: kinetics of gramicidin A channels.
    Kolb HA; Läuger P; Bamberg E
    J Membr Biol; 1975; 20(1-2):133-54. PubMed ID: 47397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-jump and voltage-jump experiments at planar lipid membranes support an aggregational (micellar) model of the gramicidin A ion channel.
    Stark G; Strässle M; Takácz Z
    J Membr Biol; 1986; 89(1):23-37. PubMed ID: 2420993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for Ca++-induced lateral phase separation in black membranes of lipid mixtures by the analysis of gramicidin A single-channels.
    Knoll W; Apell HJ; Eibl H; Miller A
    Eur Biophys J; 1986; 13(3):187-93. PubMed ID: 2420578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A.
    Antonenko YN; Stoilova TB; Kovalchuk SI; Egorova NS; Pashkovskaya AA; Sobko AA; Kotova EA; Sychev SV; Surovoy AY
    FEBS Lett; 2005 Sep; 579(23):5247-52. PubMed ID: 16165129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The study of volt-ampere characteristics of ionic channels formed by gramicidin A.
    Passechnik VI; Flerov MN; Hianik T
    Gen Physiol Biophys; 1985 Feb; 4(1):35-54. PubMed ID: 2411623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water permeability of gramicidin A-treated lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):341-50. PubMed ID: 81265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniformly oriented gramicidin channels embedded in thick monodomain lecithin multilayers.
    Huang HW; Olah GA
    Biophys J; 1987 Jun; 51(6):989-92. PubMed ID: 2440487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electrin field on gramicidin A channel formation.
    Bamberg E; Benz R
    Biochim Biophys Acta; 1976 Mar; 426(3):570-80. PubMed ID: 57801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low conductance gramicidin A channels are head-to-head dimers of beta 6.3-helices.
    Busath D; Szabo G
    Biophys J; 1988 May; 53(5):689-95. PubMed ID: 2455548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent gating of an asymmetric gramicidin channel.
    Oiki S; Koeppe RE; Andersen OS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2121-5. PubMed ID: 7534411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of ions and water in gramicidin A channels: streaming potentials across lipid bilayer membranes.
    Rosenberg PA; Finkelstein A
    J Gen Physiol; 1978 Sep; 72(3):327-40. PubMed ID: 81264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers.
    Oliver AE; Deamer DW
    Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II-induced formation of ionic channels in bilayer lipid membranes.
    Hianik T; Laputková G
    Gen Physiol Biophys; 1991 Feb; 10(1):19-30. PubMed ID: 1714413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet flash photolysis of gramicidin-doped lipid bilayers.
    Busath DD; Hayon E
    Biochim Biophys Acta; 1988 Sep; 944(1):73-8. PubMed ID: 2458137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion channels formed by chemical analogs of gramicidin A.
    Bamberg E; Apell HJ; Alpes H; Gross E; Morell JL; Harbaugh JF; Janko K; Läuger P
    Fed Proc; 1978 Oct; 37(12):2633-8. PubMed ID: 81149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.