These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 8336737)
21. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Hannig EM; Hinnebusch AG Mol Cell Biol; 1988 Nov; 8(11):4808-20. PubMed ID: 3062370 [TBL] [Abstract][Full Text] [Related]
22. Gcn2 mediates Gcn4 activation in response to glucose stimulation or UV radiation not via GCN4 translation. Marbach I; Licht R; Frohnmeyer H; Engelberg D J Biol Chem; 2001 May; 276(20):16944-51. PubMed ID: 11350978 [TBL] [Abstract][Full Text] [Related]
24. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Wek SA; Zhu S; Wek RC Mol Cell Biol; 1995 Aug; 15(8):4497-506. PubMed ID: 7623840 [TBL] [Abstract][Full Text] [Related]
25. Budding yeast GCN1 binds the GI domain to activate the eIF2alpha kinase GCN2. Kubota H; Ota K; Sakaki Y; Ito T J Biol Chem; 2001 May; 276(20):17591-6. PubMed ID: 11350982 [TBL] [Abstract][Full Text] [Related]
26. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Yang R; Wek SA; Wek RC Mol Cell Biol; 2000 Apr; 20(8):2706-17. PubMed ID: 10733573 [TBL] [Abstract][Full Text] [Related]
27. GI domain-mediated association of the eukaryotic initiation factor 2alpha kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. Kubota H; Sakaki Y; Ito T J Biol Chem; 2000 Jul; 275(27):20243-6. PubMed ID: 10801780 [TBL] [Abstract][Full Text] [Related]
28. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. Kubota H; Obata T; Ota K; Sasaki T; Ito T J Biol Chem; 2003 Jun; 278(23):20457-60. PubMed ID: 12676950 [TBL] [Abstract][Full Text] [Related]
29. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Foiani M; Cigan AM; Paddon CJ; Harashima S; Hinnebusch AG Mol Cell Biol; 1991 Jun; 11(6):3203-16. PubMed ID: 2038326 [TBL] [Abstract][Full Text] [Related]
30. Genetic evidence for functional specificity of the yeast GCN2 kinase. Tavernarakis N; Thireos G Mol Gen Genet; 1996 Jul; 251(5):613-8. PubMed ID: 8709969 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Roussou I; Thireos G; Hauge BM Mol Cell Biol; 1988 May; 8(5):2132-9. PubMed ID: 3290651 [TBL] [Abstract][Full Text] [Related]
32. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Abastado JP; Miller PF; Jackson BM; Hinnebusch AG Mol Cell Biol; 1991 Jan; 11(1):486-96. PubMed ID: 1986242 [TBL] [Abstract][Full Text] [Related]
33. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Dever TE; Feng L; Wek RC; Cigan AM; Donahue TF; Hinnebusch AG Cell; 1992 Feb; 68(3):585-96. PubMed ID: 1739968 [TBL] [Abstract][Full Text] [Related]
34. Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes. Dever TE; Yang W; Aström S; Byström AS; Hinnebusch AG Mol Cell Biol; 1995 Nov; 15(11):6351-63. PubMed ID: 7565788 [TBL] [Abstract][Full Text] [Related]
35. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron. Grant CM; Miller PF; Hinnebusch AG Mol Cell Biol; 1994 Apr; 14(4):2616-28. PubMed ID: 8139562 [TBL] [Abstract][Full Text] [Related]
36. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast. Magazinnik T; Anand M; Sattlegger E; Hinnebusch AG; Kinzy TG Nucleic Acids Res; 2005; 33(14):4584-92. PubMed ID: 16100380 [TBL] [Abstract][Full Text] [Related]
37. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Garcia-Barrio MT; Naranda T; Vazquez de Aldana CR; Cuesta R; Hinnebusch AG; Hershey JW; Tamame M Genes Dev; 1995 Jul; 9(14):1781-96. PubMed ID: 7542616 [TBL] [Abstract][Full Text] [Related]
38. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Ramirez M; Wek RC; Hinnebusch AG Mol Cell Biol; 1991 Jun; 11(6):3027-36. PubMed ID: 2038314 [TBL] [Abstract][Full Text] [Related]
39. Translational control of GCN4: an in vivo barometer of initiation-factor activity. Hinnebusch AG Trends Biochem Sci; 1994 Oct; 19(10):409-14. PubMed ID: 7817398 [TBL] [Abstract][Full Text] [Related]
40. Regulation of translation initiation by amino acids in eukaryotic cells. Kimball SR Prog Mol Subcell Biol; 2001; 26():155-84. PubMed ID: 11575165 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]