These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8338435)

  • 21. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.
    Wu J; Paden BE; Borovetz HS; Antaki JF
    Artif Organs; 2010 May; 34(5):402-11. PubMed ID: 19832736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of surface roughness on hemolysis in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    ASAIO J; 1996; 42(5):M858-62. PubMed ID: 8945006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New centrifugal blood pump with dual impeller and double pivot bearing system: wear evaluation in bearing system, performance tests, and preliminary hemolysis tests.
    Bock E; Ribeiro A; Silva M; Antunes P; Fonseca J; Legendre D; Leme J; Arruda C; Biscegli J; Nicolosi D; Andrade A
    Artif Organs; 2008 Apr; 32(4):329-33. PubMed ID: 18370949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved flow straighteners reduce thrombus in the NASA/DeBakey axial flow ventricular assist device.
    Kawahito K; Benkowski R; Ohtsubo S; Noon GP; Nosé Y; DeBakey ME
    Artif Organs; 1997 Apr; 21(4):339-43. PubMed ID: 9096811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.
    Lv S; He ZP; Liu GM; Hu SS
    Comput Methods Biomech Biomed Engin; 2024 Oct; 27(13):1744-1755. PubMed ID: 37724774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps.
    Mozafari S; Rezaienia MA; Paul GM; Rothman MT; Wen P; Korakianitis T
    ASAIO J; 2017; 63(1):53-59. PubMed ID: 28033202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of the Baylor Gyro permanently implantable centrifugal blood pump as a biventricular assist device.
    Nonaka K; Linneweber J; Ichikawa S; Yoshikawa M; Kawahito S; Mikami M; Motomura T; Ishitoya H; Nishimura I; Oestmann D; Glueck J; Schima H; Wolner E; Shinohara T; Nosé Y
    Artif Organs; 2001 Sep; 25(9):675-82. PubMed ID: 11722341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood flow analysis for the secondary impeller of an IVAS heart pump.
    Nakamura S; Ding W; Smith WA; Golding LA
    ASAIO J; 1997; 43(5):M773-7. PubMed ID: 9360151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump.
    Fang P; Du J; Yu S
    Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural improvement study of streamline design method, conical hub, and auxiliary blades for axial blood pump.
    Yu Z; Tan J; Wang S; Guo B
    Int J Artif Organs; 2021 Apr; 44(4):251-261. PubMed ID: 32957840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo evaluation of the NEDO biventricular assist device with an RPM dynamic impeller suspension system.
    Ichikawa S; Linneweber J; Motomura T; Ishitoya H; Watanabe K; Ashizawa S; Murai N; Nishimura I; Sumikura H; Glueck JA; Shinohara T; Oestmann DJ; Nosé Y
    ASAIO J; 2003; 49(5):578-82. PubMed ID: 14524568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro pump.
    Ohara Y; Makinouchi K; Orime Y; Tasai K; Naito K; Mizuguchi K; Shimono T; Damm G; Glueck J; Takatani S
    Artif Organs; 1994 Jan; 18(1):17-24. PubMed ID: 8141653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ex vivo assessment of erythrocyte tolerance to the HeartWare ventricular assist device operated in three discrete configurations.
    Kuck L; Simmonds MJ; Chan CHH; Pauls JP; Tansley GD; Feldmann F; McNamee AP
    Artif Organs; 2021 Jun; 45(6):E146-E157. PubMed ID: 33236358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The next generation Baylor C-Gyro Pump: antithrombogenic "free impeller" design for long-term centrifugal VAD.
    Ohara Y; Nosé Y
    Artif Organs; 1994 Mar; 18(3):238-43. PubMed ID: 8185493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart.
    Qian KX
    Med Eng Phys; 1996 Jan; 18(1):57-66. PubMed ID: 8771040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numeric flow simulation for an innovative ventricular assist system secondary impeller.
    Nakamura S; Ding W; Smith WA; Golding LA
    ASAIO J; 1999; 45(1):74-8. PubMed ID: 9952012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New investigations of a pulsatile impeller blood pump.
    Qian KX
    ASAIO Trans; 1990; 36(1):33-5. PubMed ID: 2306388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impeller geometry definition of the transventricular assist device.
    de Andrade G; Horikawa O; Drigo E; Andrade A; Cardoso J
    Artif Organs; 2020 Aug; 44(8):803-810. PubMed ID: 32410254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.