These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8338666)

  • 1. Spectral tuning of rhodopsin and metarhodopsin in vivo.
    Britt SG; Feiler R; Kirschfeld K; Zuker CS
    Neuron; 1993 Jul; 11(1):29-39. PubMed ID: 8338666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins.
    Salcedo E; Huber A; Henrich S; Chadwell LV; Chou WH; Paulsen R; Britt SG
    J Neurosci; 1999 Dec; 19(24):10716-26. PubMed ID: 10594055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Drosophila rhodopsin cytoplasmic tail domain is required for maintenance of rhabdomere structure.
    Ahmad ST; Natochin M; Artemyev NO; O'Tousa JE
    FASEB J; 2007 Feb; 21(2):449-55. PubMed ID: 17158966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic expression of a minor Drosophila opsin in the major photoreceptor cell class: distinguishing the role of primary receptor and cellular context.
    Zuker CS; Mismer D; Hardy R; Rubin GM
    Cell; 1988 May; 53(3):475-82. PubMed ID: 2966681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.
    Liénard MA; Bernard GD; Allen A; Lassance JM; Song S; Childers RR; Yu N; Ye D; Stephenson A; Valencia-Montoya WA; Salzman S; Whitaker MRL; Calonje M; Zhang F; Pierce NE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic expression of ultraviolet-rhodopsins in the blue photoreceptor cells of Drosophila: visual physiology and photochemistry of transgenic animals.
    Feiler R; Bjornson R; Kirschfeld K; Mismer D; Rubin GM; Smith DP; Socolich M; Zuker CS
    J Neurosci; 1992 Oct; 12(10):3862-8. PubMed ID: 1403087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honeybee blue- and ultraviolet-sensitive opsins: cloning, heterologous expression in Drosophila, and physiological characterization.
    Townson SM; Chang BS; Salcedo E; Chadwell LV; Pierce NE; Britt SG
    J Neurosci; 1998 Apr; 18(7):2412-22. PubMed ID: 9502802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids.
    Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK
    Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opsin of Calliphora peripheral photoreceptors R1-6. Homology with Drosophila Rh1 and posttranslational processing.
    Huber A; Smith DP; Zuker CS; Paulsen R
    J Biol Chem; 1990 Oct; 265(29):17906-10. PubMed ID: 1698782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opsin genes.
    Maden BE
    Essays Biochem; 1995; 29():87-111. PubMed ID: 9189715
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments.
    Nathans J; Thomas D; Hogness DS
    Science; 1986 Apr; 232(4747):193-202. PubMed ID: 2937147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis.
    Carleton KL; Spady TC; Cote RH
    J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
    Yoshizawa T; Kuwata O
    Photochem Photobiol; 1991 Dec; 54(6):1061-70. PubMed ID: 1775529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning.
    Bellingham J; Morris AG; Hunt DM
    J Exp Biol; 1998 Aug; 201(Pt 15):2299-306. PubMed ID: 9662500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colour dependence of the early receptor potential and late receptor potential in scallop distal photoreceptor.
    Cornwall MC; Gorman AL
    J Physiol; 1983 Jul; 340():307-34. PubMed ID: 6887052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells.
    Ahmad ST; Natochin M; Barren B; Artemyev NO; O'Tousa JE
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3722-8. PubMed ID: 16936079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement of N-linked glycosylation site in Drosophila rhodopsin.
    O'Tousa JE
    Vis Neurosci; 1992 May; 8(5):385-90. PubMed ID: 1534022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of spectral tuning in the dolphin visual pigments.
    Fasick JI; Robsinson PR
    Biochemistry; 1998 Jan; 37(2):433-8. PubMed ID: 9471225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.