These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8339435)

  • 1. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s?
    Adams JE; Abendschein DR; Jaffe AS
    Circulation; 1993 Aug; 88(2):750-63. PubMed ID: 8339435
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic differences between creatine kinase-isoenzyme MB (CK-MB) and c-troponin-T in patients with myocardial damage.
    Oremek GM; Seiffert UB; Beyersdorf F
    Clin Chim Acta; 1996 Jul; 251(2):201-5. PubMed ID: 8862474
    [No Abstract]   [Full Text] [Related]  

  • 3. Laboratory assessment of myocardial damage: which test is best?
    Schreiber WE
    Am J Clin Pathol; 1997 Apr; 107(4):383-4. PubMed ID: 9124204
    [No Abstract]   [Full Text] [Related]  

  • 4. [Detection of coronary reperfusion using biochemical markers].
    Ishii J; Nomura M
    Nihon Rinsho; 1994 Jul; 52 Suppl(Pt 1):813-9. PubMed ID: 12436621
    [No Abstract]   [Full Text] [Related]  

  • 5. Human heart-type cytoplasmic fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in comparison with myoglobin and creatine kinase isoenzyme MB.
    Okamoto F; Sohmiya K; Ohkaru Y; Kawamura K; Asayama K; Kimura H; Nishimura S; Ishii H; Sunahara N; Tanaka T
    Clin Chem Lab Med; 2000 Mar; 38(3):231-8. PubMed ID: 10905760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart-type fatty acid binding protein (hFABP) in the diagnosis of myocardial damage in coronary artery bypass grafting.
    Petzold T; Feindt P; Sunderdiek U; Boeken U; Fischer Y; Gams E
    Eur J Cardiothorac Surg; 2001 Jun; 19(6):859-64. PubMed ID: 11404143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress on biochemical diagnosis of acute myocardial infarction].
    Tanaka H; Abe S
    Nihon Naika Gakkai Zasshi; 1992 Aug; 81(8):1180-5. PubMed ID: 1431455
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of heart-type fatty acid-binding protein in early detection of acute myocardial infarction.
    Ghani F; Wu AH; Graff L; Petry C; Armstrong G; Prigent F; Brown M
    Clin Chem; 2000 May; 46(5):718-9. PubMed ID: 10794758
    [No Abstract]   [Full Text] [Related]  

  • 9. Fatty acid-binding protein as marker of muscle injury: experimental findings and clinical application.
    Glatz JF; Van der Vusse GJ; Maessen JG; Van Dieijen-Visser MP; Hermens WT
    Acta Anaesthesiol Scand Suppl; 1997; 111():292-4. PubMed ID: 9421050
    [No Abstract]   [Full Text] [Related]  

  • 10. Human heart-type cytoplasmic fatty acid-binding protein as an indicator of acute myocardial infarction.
    Yoshimoto K; Tanaka T; Somiya K; Tsuji R; Okamoto F; Kawamura K; Ohkaru Y; Asayama K; Ishii H
    Heart Vessels; 1995; 10(6):304-9. PubMed ID: 8655467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Detection of coronary reperfusion using biochemical markers].
    Ishii J
    Nihon Rinsho; 2003 Apr; 61 Suppl 4():473-8. PubMed ID: 12735018
    [No Abstract]   [Full Text] [Related]  

  • 12. Estimation of myocardial infarct size from plasma myoglobin or fatty acid-binding protein. Influence of renal function.
    Wodzig KW; Kragten JA; Hermens WT; Glatz JF; van Dieijen-Visser MP
    Eur J Clin Chem Clin Biochem; 1997 Mar; 35(3):191-8. PubMed ID: 9127740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A strategy for the use of cardiac injury markers (troponin I and T, creatine kinase-MB mass and isoforms, and myoglobin) in the diagnosis of acute myocardial infarction.
    Kost GJ; Kirk JD; Omand K
    Arch Pathol Lab Med; 1998 Mar; 122(3):245-51. PubMed ID: 9823862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of myocardial infarct size from plasma fatty acid-binding protein or myoglobin, using individually estimated clearance rates.
    de Groot MJ; Wodzig KW; Simoons ML; Glatz JF; Hermens WT
    Cardiovasc Res; 1999 Nov; 44(2):315-24. PubMed ID: 10690308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of coronary reperfusion in patients with myocardial infarction using fatty acid binding protein concentrations in plasma.
    de Groot MJ; Muijtjens AM; Simoons ML; Hermens WT; Glatz JF
    Heart; 2001 Mar; 85(3):278-85. PubMed ID: 11179265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardizing utilization of biomarkers in diagnosis and management of acute cardiac syndromes.
    Valdes R; Jortani SA
    Clin Chim Acta; 1999 Jun; 284(2):135-40. PubMed ID: 10451240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical markers of ischaemia for the early identification of acute myocardial infarction without St segment elevation.
    Haastrup B; Gill S; Kristensen SR; Jørgensen PJ; Glatz JF; Haghfelt T; Hørder M
    Cardiology; 2000; 94(4):254-61. PubMed ID: 11326147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity.
    O'Brien PJ
    Toxicology; 2008 Mar; 245(3):206-18. PubMed ID: 18249481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circulating concentrations of cardiac proteins indicate the severity of congestive heart failure.
    Goto T; Takase H; Toriyama T; Sugiura T; Sato K; Ueda R; Dohi Y
    Heart; 2003 Nov; 89(11):1303-7. PubMed ID: 14594884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human heart-type fatty acid-binding protein as an early diagnostic and prognostic marker in acute coronary syndrome.
    Nakata T; Hashimoto A; Hase M; Tsuchihashi K; Shimamoto K
    Cardiology; 2003; 99(2):96-104. PubMed ID: 12711885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.