These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8339562)

  • 1. Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity.
    Krueger RR; Krasinski JS; Radzewicz C; Stonecipher KG; Rowsey JJ
    Cornea; 1993 Jul; 12(4):330-4. PubMed ID: 8339562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structure and dynamics of photo-acoustic shock-waves in 193 nm excimer laser photo-ablation of the cornea].
    Kermani O; Lubatschowski H
    Fortschr Ophthalmol; 1991; 88(6):748-53. PubMed ID: 1794797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea.
    Bor Z; Hopp B; Rácz B; Szabó G; Ratkay I; Süveges I; Füst A; Mohay J
    Refract Corneal Surg; 1993; 9(2 Suppl):S111-5. PubMed ID: 8499358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal surface morphology following excimer laser ablation with humidified gases.
    Krueger RR; Campos M; Wang XW; Lee M; McDonnell PJ
    Arch Ophthalmol; 1993 Aug; 111(8):1131-7. PubMed ID: 8352695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed photography of excimer laser ablation of the cornea.
    Puliafito CA; Stern D; Krueger RR; Mandel ER
    Arch Ophthalmol; 1987 Sep; 105(9):1255-9. PubMed ID: 3632443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Laser-induced pressure waves in the eye. Propagation characteristics].
    Spörl E; Gruchmann T; Genth U; Mierdel P; Seiler T
    Ophthalmologe; 1997 Aug; 94(8):578-82. PubMed ID: 9376697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ablation rates and surface ultrastructure of 193 nm excimer laser keratectomies.
    Campos M; Wang XW; Hertzog L; Lee M; Clapham T; Trokel SL; McDonnell PJ
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2493-500. PubMed ID: 8325755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal wound healing after excimer laser ablation. Effects of nitrogen gas blower.
    Campos M; Cuevas K; Garbus J; Lee M; McDonnell PJ
    Ophthalmology; 1992 Jun; 99(6):893-7. PubMed ID: 1630779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ablation of the cornea by using a low-energy excimer laser.
    Unkroth A; Kleinschmidt J; Ziegler W; Hofmann B; Jütte M
    Graefes Arch Clin Exp Ophthalmol; 1993 May; 231(5):303-7. PubMed ID: 8319921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human corneal ablation threshold using the 193-nm ArF excimer laser.
    Berns MW; Chao L; Giebel AW; Liaw LH; Andrews J; VerSteeg B
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):826-30. PubMed ID: 10102278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-ultraviolet laser ablation of the cornea: photoacoustic studies.
    Srinivasan R; Dyer PE; Braren B
    Lasers Surg Med; 1987; 6(6):514-9. PubMed ID: 3573923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry.
    Ediger MN; Pettit GH; Weiblinger RP
    Refract Corneal Surg; 1993; 9(4):268-75. PubMed ID: 8398972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Photoablation of the cornea with pulsed 2790 nm ErCr:YSGG laser irradiation. Basic studies].
    Lubatschowski H; Kermani O; Asshauer T
    Ophthalmologe; 1993 Apr; 90(2):183-90. PubMed ID: 8490304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular measurements of pressure transients induced by excimer laser ablation of the cornea.
    Siano S; Pini R; Gobbi PG; Salimbeni R; Vannini M; Carones F; Trabucchi G; Brancato R
    Lasers Surg Med; 1997; 20(4):416-25. PubMed ID: 9142681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Moist ablation of the corneal surface with the Er:YAG laser. Results of optimizing ablation].
    Bende T; Jean B; Matallana M; Seiler T; Steiner R
    Ophthalmologe; 1994 Oct; 91(5):651-4. PubMed ID: 7812099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal effects in excimer laser trephination of the cornea.
    Langenbucher A; Seitz B; Kus MM; Naumann GO
    Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S142-8. PubMed ID: 8871166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water.
    Juhasz T; Hu XH; Turi L; Bor Z
    Lasers Surg Med; 1994; 15(1):91-8. PubMed ID: 7997052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.