BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8339932)

  • 1. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2.
    Sheldon LA; Kingston RE
    Genes Dev; 1993 Aug; 7(8):1549-58. PubMed ID: 8339932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper.
    Rabindran SK; Haroun RI; Clos J; Wisniewski J; Wu C
    Science; 1993 Jan; 259(5092):230-4. PubMed ID: 8421783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel testis-specific protein that interacts with heat shock factor 2.
    Yoshima T; Yura T; Yanagi H
    Gene; 1998 Jul; 214(1-2):139-46. PubMed ID: 9651507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear entry, oligomerization, and DNA binding of the Drosophila heat shock transcription factor are regulated by a unique nuclear localization sequence.
    Zandi E; Tran TN; Chamberlain W; Parker CS
    Genes Dev; 1997 May; 11(10):1299-314. PubMed ID: 9171374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure.
    Zuo J; Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the PP2A-interacting region of heat shock transcription factor 2.
    Xing H; Hong Y; Sarge KD
    Cell Stress Chaperones; 2007; 12(2):192-7. PubMed ID: 17688198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The trimerization domain of human heat shock factor 2 is able to interact with nucleoporin p62.
    Yoshima T; Yura T; Yanagi H
    Biochem Biophys Res Commun; 1997 Nov; 240(1):228-33. PubMed ID: 9367915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors.
    Jaeger AM; Pemble CW; Sistonen L; Thiele DJ
    Nat Struct Mol Biol; 2016 Feb; 23(2):147-54. PubMed ID: 26727490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper.
    Kouzarides T; Packham G; Cook A; Farrell PJ
    Oncogene; 1991 Feb; 6(2):195-204. PubMed ID: 1847997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of competition between HSF2 and catalytic subunit for binding to the PR65/A subunit of PP2A.
    Hong Y; Lubert EJ; Rodgers DW; Sarge KD
    Biochem Biophys Res Commun; 2000 May; 272(1):84-9. PubMed ID: 10872807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C/EBP proteins contain nuclear localization signals imbedded in their basic regions.
    Williams SC; Angerer ND; Johnson PF
    Gene Expr; 1997; 6(6):371-85. PubMed ID: 9495318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence.
    MikaƩlian I; Drouet E; Marechal V; Denoyel G; Nicolas JC; Sergeant A
    J Virol; 1993 Feb; 67(2):734-42. PubMed ID: 8380464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin beta.
    Nagoshi E; Yoneda Y
    Mol Cell Biol; 2001 Apr; 21(8):2779-89. PubMed ID: 11283257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear targeting of the maize R protein requires two nuclear localization sequences.
    Shieh MW; Wessler SR; Raikhel NV
    Plant Physiol; 1993 Feb; 101(2):353-61. PubMed ID: 8278504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean.
    Czarnecka-Verner E; Yuan CX; Fox PC; Gurley WB
    Plant Mol Biol; 1995 Oct; 29(1):37-51. PubMed ID: 7579166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus.
    Narayana N; Hua Q; Weiss MA
    J Mol Biol; 2001 Jul; 310(3):635-58. PubMed ID: 11439029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Drosophila heat shock factor trimerization: global sequence requirements and independence of nuclear localization.
    Orosz A; Wisniewski J; Wu C
    Mol Cell Biol; 1996 Dec; 16(12):7018-30. PubMed ID: 8943357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.