These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8340262)

  • 1. Voluntary contraction of middle ear muscles: effects on input impedance, energy reflectance and spontaneous otoacoustic emissions.
    Burns EM; Harrison WA; Bulen JC; Keefe DH
    Hear Res; 1993 May; 67(1-2):117-27. PubMed ID: 8340262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wideband reflectance in newborns with present transient-evoked otoacoustic emissions.
    Silva KA; Urosas JG; Sanches SG; Carvallo RM
    Codas; 2013; 25(1):29-33. PubMed ID: 24408167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears.
    Sun XM
    Hear Res; 2008 Mar; 237(1-2):66-75. PubMed ID: 18258398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
    Goodman SS; Keefe DH
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):125-39. PubMed ID: 16568366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covariation of binaural, concurrently-measured spontaneous otoacoustic emissions.
    Penner MJ; Brauth SE; Jastreboff PJ
    Hear Res; 1994 Mar; 73(2):190-4. PubMed ID: 8188547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies.
    Burns EM; Keefe DH; Ling R
    J Acoust Soc Am; 1998 Jan; 103(1):462-74. PubMed ID: 9440333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Moulin A; Collet L; Veuillet E; Morgon A
    Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous otoacoustic emissions in schoolchildren.
    Jedrzejczak WW; Kochanek K; Pilka E; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2016 Oct; 89():67-71. PubMed ID: 27619031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in human spontaneous otoacoustic emissions with contralateral acoustic stimulation].
    Kashiwamura M; Satoh N; Fukuda S; Kawanami M; Chida E; Inuyama Y
    Nihon Jibiinkoka Gakkai Kaiho; 1993 Jun; 96(6):922-30. PubMed ID: 8345399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears.
    Hauser R; Probst R; Harris FP
    Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Harrison WA; Burns EM
    J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal development of wideband reflectance tympanometry in normal and at-risk infants.
    Hunter LL; Keefe DH; Feeney MP; Fitzpatrick DF; Lin L
    Hear Res; 2016 Oct; 340():3-14. PubMed ID: 26712451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirp-evoked otoacoustic emissions in children.
    Jedrzejczak WW; Kochanek K; Sliwa L; Pilka E; Piotrowska A; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):101-6. PubMed ID: 23116905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of otoacoustic emissions in chinchilla when the middle ear contains amniotic fluid.
    Akinpelu OV; Funnell WR; Daniel SJ
    Laryngoscope; 2015 Apr; 125(4):E138-42. PubMed ID: 25431116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect external and middle ears have in otoacoustic emissions.
    Couto CM; Carvallo RM
    Braz J Otorhinolaryngol; 2009; 75(1):15-23. PubMed ID: 19488555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of changes in dynamic characteristics of the middle ear on transient-evoked otoacoustic emissions.
    Spirić S; Spirić P; Vranjes D; Aleksić A
    Med Pregl; 2011; 64(9-10):439-42. PubMed ID: 22097107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.