These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears. Sun XM Hear Res; 2008 Mar; 237(1-2):66-75. PubMed ID: 18258398 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions. Goodman SS; Keefe DH J Assoc Res Otolaryngol; 2006 Jun; 7(2):125-39. PubMed ID: 16568366 [TBL] [Abstract][Full Text] [Related]
5. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise. Büki B; Wit HP; Avan P Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505 [TBL] [Abstract][Full Text] [Related]
7. Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies. Burns EM; Keefe DH; Ling R J Acoust Soc Am; 1998 Jan; 103(1):462-74. PubMed ID: 9440333 [TBL] [Abstract][Full Text] [Related]
8. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Moulin A; Collet L; Veuillet E; Morgon A Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous otoacoustic emissions in schoolchildren. Jedrzejczak WW; Kochanek K; Pilka E; Skarzynski H Int J Pediatr Otorhinolaryngol; 2016 Oct; 89():67-71. PubMed ID: 27619031 [TBL] [Abstract][Full Text] [Related]
10. [Changes in human spontaneous otoacoustic emissions with contralateral acoustic stimulation]. Kashiwamura M; Satoh N; Fukuda S; Kawanami M; Chida E; Inuyama Y Nihon Jibiinkoka Gakkai Kaiho; 1993 Jun; 96(6):922-30. PubMed ID: 8345399 [TBL] [Abstract][Full Text] [Related]
11. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears. Hauser R; Probst R; Harris FP Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333 [TBL] [Abstract][Full Text] [Related]
12. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. Harrison WA; Burns EM J Acoust Soc Am; 1993 Nov; 94(5):2649-58. PubMed ID: 8270741 [TBL] [Abstract][Full Text] [Related]
13. Longitudinal development of wideband reflectance tympanometry in normal and at-risk infants. Hunter LL; Keefe DH; Feeney MP; Fitzpatrick DF; Lin L Hear Res; 2016 Oct; 340():3-14. PubMed ID: 26712451 [TBL] [Abstract][Full Text] [Related]
14. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans. Sun XM; Shaver MD Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291 [TBL] [Abstract][Full Text] [Related]
15. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. Jedrzejczak WW; Kochanek K; Skarzynski H PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905 [TBL] [Abstract][Full Text] [Related]