These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8340373)

  • 1. Rate-limiting step in electron transport. Osmotically sensitive diffusion of quinones through voids in the bilayer.
    Mathai JC; Sauna ZE; John O; Sitaramam V
    J Biol Chem; 1993 Jul; 268(21):15442-54. PubMed ID: 8340373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch sensitivity of transmembrane mobility of hydrogen peroxide through voids in the bilayer. Role of cardiolipin.
    Mathai JC; Sitaramam V
    J Biol Chem; 1994 Jul; 269(27):17784-93. PubMed ID: 8027032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of osmotic pressure on mitochondrial respiratory chain and indices of oxidative phosphorylation.
    Sitaramam V; Sambasivarao D; Mathai JC
    Biochim Biophys Acta; 1989 Jul; 975(2):252-66. PubMed ID: 2545267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is ubiquinone diffusion rate-limiting for electron transfer?
    Lenaz G; Fato R
    J Bioenerg Biomembr; 1986 Oct; 18(5):369-401. PubMed ID: 3021715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective.
    Manoj KM; Gideon DA; Parashar A
    Cell Biochem Biophys; 2021 Mar; 79(1):3-10. PubMed ID: 32989571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components.
    Schneider H; Lemasters JJ; Höchli M; Hackenbrock CR
    J Biol Chem; 1980 Apr; 255(8):3748-56. PubMed ID: 6245090
    [No Abstract]   [Full Text] [Related]  

  • 7. Determination of partition and lateral diffusion coefficients of ubiquinones by fluorescence quenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes.
    Fato R; Battino M; Degli Esposti M; Parenti Castelli G; Lenaz G
    Biochemistry; 1986 Jun; 25(11):3378-90. PubMed ID: 3730366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes.
    Schneider H; Lemasters JJ; Hackenbrock CR
    J Biol Chem; 1982 Sep; 257(18):10789-93. PubMed ID: 6286674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility in the mitochondrial electron transport chain.
    Hochman J; Ferguson-Miller S; Schindler M
    Biochemistry; 1985 May; 24(10):2509-16. PubMed ID: 2990530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron and proton transfers through quinones and cytochrome bc complexes.
    Rich PR
    Biochim Biophys Acta; 1984 Apr; 768(1):53-79. PubMed ID: 6322844
    [No Abstract]   [Full Text] [Related]  

  • 11. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1988 Oct; 263(28):14359-67. PubMed ID: 3170548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of quinone mediated electron transport.
    Wiggins TE
    Biochem Soc Trans; 1992 Aug; 20(3):237S. PubMed ID: 1426535
    [No Abstract]   [Full Text] [Related]  

  • 14. [Comparison of the effects of some perminductors on mitochondria and chloroplasts].
    Shol'ts KF; Reznik GI; Mosolova IM; Kotel'nikova AV
    Biokhimiia; 1982 Mar; 47(3):447-54. PubMed ID: 6176281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity.
    Curti C; Mingatto FE; Polizello AC; Galastri LO; Uyemura SA; Santos AC
    Mol Cell Biochem; 1999 Sep; 199(1-2):103-9. PubMed ID: 10544958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthroyl stearate as a fluorescent probe of chloroplast membranes.
    Vandermeulen DL; Govindjee
    Biochim Biophys Acta; 1976 Dec; 449(3):340-56. PubMed ID: 63289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral diffusion as a rate-limiting step in ubiquinone-mediated mitochondrial electron transport.
    Chazotte B; Hackenbrock CR
    J Biol Chem; 1989 Mar; 264(9):4978-85. PubMed ID: 2925679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of respiratory electron-transport reactions in quinone-depleted particle preparations from Anacystis nidulans.
    Peschek GA
    Biochem J; 1980 Feb; 186(2):515-23. PubMed ID: 6769434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of lutein on the transport of Ca2+ across phospholipid bilayer and mitochondrial membrane.
    Chaturvedi VK; Kurup CK
    Biochem Int; 1986 Feb; 12(2):373-7. PubMed ID: 3964291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.