BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8340386)

  • 1. Limited tryptic digestion near the amino terminus of bovine liver rhodanese produces active electrophoretic variants with altered refolding.
    Merrill GA; Butler M; Horowitz PM
    J Biol Chem; 1993 Jul; 268(21):15611-20. PubMed ID: 8340386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant bovine rhodanese: purification and comparison with bovine liver rhodanese.
    Miller DM; Kurzban GP; Mendoza JA; Chirgwin JM; Hardies SC; Horowitz PM
    Biochim Biophys Acta; 1992 Jun; 1121(3):286-92. PubMed ID: 1627606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1994 Jan; 13(1):15-22. PubMed ID: 8011067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain separation precedes global unfolding of rhodanese.
    Shibatani T; Kramer G; Hardesty B; Horowitz PM
    J Biol Chem; 1999 Nov; 274(47):33795-9. PubMed ID: 10559274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL.
    Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM
    J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of cloned bovine adrenal rhodanese.
    Miller DM; Delgado R; Chirgwin JM; Hardies SC; Horowitz PM
    J Biol Chem; 1991 Mar; 266(8):4686-91. PubMed ID: 2002017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The covalent structure of bovine liver rhodanese. NH2-terminal sequence and partial structural analysis of tryptic peptides from the citraconylated protein.
    Weng L; Russell J; Heinrikson RL
    J Biol Chem; 1978 Nov; 253(22):8093-101. PubMed ID: 711736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micelle-assisted protein folding. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Mar; 267(9):5811-6. PubMed ID: 1556097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24193-8. PubMed ID: 1447169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site sulfhydryl chemistry plays a major role in the misfolding of urea-denatured rhodanese.
    Panda M; Horowitz PM
    J Protein Chem; 2000 Jul; 19(5):399-409. PubMed ID: 11131146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese.
    Mendoza JA; Butler MC; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24648-54. PubMed ID: 1360012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid pH-induced conformational changes in bovine liver rhodanese.
    Horowitz PM; Xu R
    J Biol Chem; 1992 Sep; 267(27):19464-9. PubMed ID: 1527067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological evidence for a conformational difference between recombinant bovine rhodanese and rhodanese purified from bovine liver.
    Merrill GA; Miller D; Chirgwin J; Horowitz PM
    J Protein Chem; 1992 Apr; 11(2):193-9. PubMed ID: 1382437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding.
    Taguchi H; Makino Y; Yoshida M
    J Biol Chem; 1994 Mar; 269(11):8529-34. PubMed ID: 7907593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic interconversion of electrophoretic variants of the enzyme rhodanese.
    Horowitz P; Falksen K
    J Biol Chem; 1983 Feb; 258(3):1614-8. PubMed ID: 6571838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of cysteine 254 facilitates the conformational changes accompanying the interconversion of persulfide-substituted and persulfide-free rhodanese.
    Islam TA; Miller-Martini DM; Horowitz PM
    J Biol Chem; 1994 Mar; 269(11):7903-13. PubMed ID: 8132509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The covalent structure of bovine liver rhodanese. Isolation and partial structural analysis of cyanogen bromide fragements and the complete sequence of the enzyme.
    Russell J; Weng L; Keim PS; Heinrikson RL
    J Biol Chem; 1978 Nov; 253(22):8102-8. PubMed ID: 711737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of avian hepatic rhodanese.
    Kohanski RA; Heinrikson RL
    J Protein Chem; 1990 Aug; 9(4):369-77. PubMed ID: 2275748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodanese folding is controlled by the partitioning of its folding intermediates.
    Gorovits BM; McGee WA; Horowitz PM
    Biochim Biophys Acta; 1998 Jan; 1382(1):120-8. PubMed ID: 9507086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.