BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8340386)

  • 21. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese.
    Mendoza JA; Rogers E; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Jul; 266(20):13044-9. PubMed ID: 1677004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification of bovine liver rhodanese by low-pH column chromatography.
    Kurzban GP; Horowitz PM
    Protein Expr Purif; 1991; 2(5-6):379-84. PubMed ID: 1821812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese.
    Song JL; Wang CC
    Eur J Biochem; 1995 Jul; 231(2):312-6. PubMed ID: 7635143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical characterization of a reactivatable liposome-bound rhodanese folding intermediate.
    Zardeneta G; Horowitz PM
    Biochemistry; 1993 Dec; 32(50):13941-8. PubMed ID: 8268170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The enzyme rhodanese can be reactivated after denaturation in guanidinium chloride.
    Horowitz PM; Simon D
    J Biol Chem; 1986 Oct; 261(30):13887-91. PubMed ID: 3464593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Productive and nonproductive intermediates in the folding of denatured rhodanese.
    Panda M; Gorovits BM; Horowitz PM
    J Biol Chem; 2000 Jan; 275(1):63-70. PubMed ID: 10617586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An additional serine residue at the C terminus of rhodanese destabilizes the enzyme.
    Kramer G; Ramachandiran V; Horowitz P; Hardesty B
    Arch Biochem Biophys; 2001 Jan; 385(2):332-7. PubMed ID: 11368014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.
    Trevino RJ; Gliubich F; Berni R; Cianci M; Chirgwin JM; Zanotti G; Horowitz PM
    J Biol Chem; 1999 May; 274(20):13938-47. PubMed ID: 10318804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chaperone-mimetic effect of serum albumin on rhodanese.
    Jarabak R; Westley J; Dungan JM; Horowitz P
    J Biochem Toxicol; 1993 Mar; 8(1):41-8. PubMed ID: 8492302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese.
    Melkani GC; McNamara C; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2004 Mar; 36(3):505-18. PubMed ID: 14687928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing.
    Kudlicki W; Coffman A; Kramer G; Hardesty B
    J Biol Chem; 1997 Dec; 272(51):32206-10. PubMed ID: 9405422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 34. Unassisted refolding of urea unfolded rhodanese.
    Mendoza JA; Rogers E; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Jul; 266(21):13587-91. PubMed ID: 1856195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP.
    Makino Y; Taguchi H; Yoshida M
    FEBS Lett; 1993 Dec; 336(2):363-7. PubMed ID: 7903258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action.
    Mendoza JA; Demeler B; Horowitz PM
    J Biol Chem; 1994 Jan; 269(4):2447-51. PubMed ID: 7905478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The folding and stability of rhodanese are influenced by the replacement of glutamic acid 17 in the NH2-terminal helix by proline but not by glutamine.
    Luo GX; Horowitz PM
    J Biol Chem; 1993 May; 268(14):10246-51. PubMed ID: 8098037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chaperonin cpn60 from Escherichia coli protects the mitochondrial enzyme rhodanese against heat inactivation and supports folding at elevated temperatures.
    Mendoza JA; Lorimer GH; Horowitz PM
    J Biol Chem; 1992 Sep; 267(25):17631-4. PubMed ID: 1355476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning, sequencing and characterization of cDNA to rat liver rhodanese, a thiosulphate sulphurtransferase.
    Weiland KL; Dooley TP
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):227-31. PubMed ID: 2018478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The aggregation state of rhodanese during folding influences the ability of GroEL to assist reactivation.
    Bhattacharyya AM; Horowitz PM
    J Biol Chem; 2001 Aug; 276(31):28739-43. PubMed ID: 11397797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.