These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 8340804)
1. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. Huang S; Moody SA J Neurosci; 1993 Aug; 13(8):3193-210. PubMed ID: 8340804 [TBL] [Abstract][Full Text] [Related]
2. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Moody SA; Kline MJ Anat Embryol (Berl); 1990; 182(4):347-62. PubMed ID: 2252221 [TBL] [Abstract][Full Text] [Related]
3. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus. Gallagher BC; Hainski AM; Moody SA Development; 1991 Aug; 112(4):1103-14. PubMed ID: 1935699 [TBL] [Abstract][Full Text] [Related]
4. Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus. Moore KB; Moody SA Dev Biol; 1999 Aug; 212(1):25-41. PubMed ID: 10419683 [TBL] [Abstract][Full Text] [Related]
5. The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways. Yan B; Moody SA Dev Biol; 2007 May; 305(1):103-19. PubMed ID: 17428460 [TBL] [Abstract][Full Text] [Related]
6. Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis. Huang S; Moody SA J Neurosci; 1992 Apr; 12(4):1351-62. PubMed ID: 1348272 [TBL] [Abstract][Full Text] [Related]
7. Testing retina fate commitment in Xenopus by blastomere deletion, transplantation, and explant culture. Moody SA Methods Mol Biol; 2012; 884():115-27. PubMed ID: 22688701 [TBL] [Abstract][Full Text] [Related]
8. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis. Vodicka MA; Gerhart JC Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265 [TBL] [Abstract][Full Text] [Related]
9. Asymmetrical blastomere origin and spatial domains of dopamine and neuropeptide Y amacrine subtypes in Xenopus tadpole retina. Huang S; Moody SA J Comp Neurol; 1995 Sep; 360(3):442-53. PubMed ID: 8543650 [TBL] [Abstract][Full Text] [Related]
10. A contact-dependent animal-to-vegetal signal biases neural lineages during Xenopus cleavage stages. Bauer DV; Best DW; Hainski AM; Moody SA Dev Biol; 1996 Sep; 178(2):217-28. PubMed ID: 8812124 [TBL] [Abstract][Full Text] [Related]
11. Blastomeres show differential fate changes in 8-cell Xenopus laevis embryos that are rotated 90 degrees before first cleavage. Huang S; Johnson KE; Wang HZ Dev Growth Differ; 1998 Apr; 40(2):189-98. PubMed ID: 9572361 [TBL] [Abstract][Full Text] [Related]
12. Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres. Moody SA J Neurosci; 1989 Aug; 9(8):2919-30. PubMed ID: 2769371 [TBL] [Abstract][Full Text] [Related]
13. Pattern regulation in defect embryos of Xenopus laevis. Kageura H; Yamana K Dev Biol; 1984 Feb; 101(2):410-5. PubMed ID: 6692985 [TBL] [Abstract][Full Text] [Related]
14. Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Kenyon KL; Zaghloul N; Moody SA Dev Biol; 2001 Dec; 240(1):77-91. PubMed ID: 11784048 [TBL] [Abstract][Full Text] [Related]
15. Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages. Huang S; Yan B; Sullivan SA; Moody SA Dev Dyn; 2007 Jan; 236(1):171-83. PubMed ID: 17096409 [TBL] [Abstract][Full Text] [Related]
16. Regional specification within the mesoderm of early embryos of Xenopus laevis. Dale L; Slack JM Development; 1987 Jun; 100(2):279-95. PubMed ID: 3652971 [TBL] [Abstract][Full Text] [Related]
17. Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation. Klein SL; Moody SA Development; 1989 Jul; 106(3):599-610. PubMed ID: 2557198 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic bias and lineage restriction in the phenotype determination of dopamine and neuropeptide Y amacrine cells. Moody SA; Chow I; Huang S J Neurosci; 2000 May; 20(9):3244-53. PubMed ID: 10777789 [TBL] [Abstract][Full Text] [Related]
19. High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos. Koga M; Nakashima T; Matsuo S; Takeya R; Sumimoto H; Sakai M; Kageura H Dev Growth Differ; 2012 Sep; 54(7):717-29. PubMed ID: 22994797 [TBL] [Abstract][Full Text] [Related]
20. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo. Kinoshita K; Bessho T; Asashima M Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]