These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 8341075)
1. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study. Balschi JA; Henderson T; Bradley EL; Gelman S J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075 [TBL] [Abstract][Full Text] [Related]
2. Changes in myocardial high-energy phosphate stores and carbohydrate metabolism during intermittent aortic crossclamping in dogs on cardiopulmonary bypass at 34 degrees and 25 degrees C. van der Veen FH; van der Vusse GJ; Willemsen P; Kruger RT; van der Nagel T; Coumans WA; Reneman RS J Thorac Cardiovasc Surg; 1990 Sep; 100(3):389-99. PubMed ID: 2095756 [TBL] [Abstract][Full Text] [Related]
3. Brain death-induced alterations in myocardial workload and high-energy phosphates: a phosphorus 31 magnetic resonance spectroscopy study in the cat. Brandon Bravo Bruinsma GJ; Nederhoff MG; te Boekhorst BC; Bredée JJ; Ruigrok TJ; van Echteld CJ J Heart Lung Transplant; 1998 Oct; 17(10):984-90. PubMed ID: 9811406 [TBL] [Abstract][Full Text] [Related]
4. Electrode-derived myocardial pH measurements reflect intracellular myocardial metabolism assessed by phosphorus 31-nuclear magnetic resonance spectroscopy during normothermic ischemia. Axford TC; Dearani JA; Khait I; Park WM; Patel MA; Doursounian M; Neuringer L; Valeri CR; Khuri SF J Thorac Cardiovasc Surg; 1992 May; 103(5):902-6; discussion 906-7. PubMed ID: 1569773 [TBL] [Abstract][Full Text] [Related]
5. Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. Neubauer S; Horn M; Pabst T; Harre K; Strömer H; Bertsch G; Sandstede J; Ertl G; Hahn D; Kochsiek K J Investig Med; 1997 Oct; 45(8):453-62. PubMed ID: 9394098 [TBL] [Abstract][Full Text] [Related]
6. Left ventricular contractility after hypothermic preservation: predictive value of phosphorus 31-nuclear magnetic resonance spectroscopy. Carteaux JP; Mertes PM; Pinelli G; Escanye JM; Walker P; Brunotte F; Jaboin Y; Robert J; Villemot JP J Heart Lung Transplant; 1994; 13(4):661-8. PubMed ID: 7947883 [TBL] [Abstract][Full Text] [Related]
7. Ischemic preconditioning: bioenergetic and metabolic changes and the role of endogenous adenosine. Headrick JP J Mol Cell Cardiol; 1996 Jun; 28(6):1227-40. PubMed ID: 8782064 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo. Heineman FW; Balaban RS J Clin Invest; 1990 Mar; 85(3):843-52. PubMed ID: 2312728 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus metabolites in different muscles of the rat leg by 31P image-selected in vivo spectroscopy. Madhu B; Lagerwall K; Soussi B NMR Biomed; 1996 Dec; 9(8):327-32. PubMed ID: 9176886 [TBL] [Abstract][Full Text] [Related]
10. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study. Gilles RJ; D'Orio V; Ciancabilla F; Carlier PG Crit Care Med; 1994 Mar; 22(3):499-505. PubMed ID: 8125002 [TBL] [Abstract][Full Text] [Related]
11. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Arnold DL; Taylor DJ; Radda GK Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759 [TBL] [Abstract][Full Text] [Related]
12. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo. Portman MA; Standaert TA; Ning XH J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181 [TBL] [Abstract][Full Text] [Related]
14. Insulin improves cardiac contractile function and oxygen utilization efficiency during moderate ischemia without compromising myocardial energetics. Tune JD; Mallet RT; Downey HF J Mol Cell Cardiol; 1998 Oct; 30(10):2025-35. PubMed ID: 9799656 [TBL] [Abstract][Full Text] [Related]
15. P-31 magnetic resonance spectroscopy of skeletal muscle in the eosinophilia-myalgia syndrome: a preliminary study. Clauw DJ; Hewes B; Nelson M; Katz P; Rajan S J Rheumatol; 1994 Apr; 21(4):654-7. PubMed ID: 8035389 [TBL] [Abstract][Full Text] [Related]
16. Phosphocreatine restores high-energy phosphates in ischemic myocardium: implication for off-pump cardiac revascularization. Prabhakar G; Vona-Davis L; Murray D; Lakhani P; Murray G J Am Coll Surg; 2003 Nov; 197(5):786-91. PubMed ID: 14585415 [TBL] [Abstract][Full Text] [Related]
17. Energy metabolism of the heart and the liver in brain-dead dogs as assessed by 31P NMR spectroscopy. Kitai T; Tanaka A; Terasaki M; Okamoto R; Ozawa K; Morikawa S; Inubushi T J Surg Res; 1993 Dec; 55(6):599-606. PubMed ID: 8246493 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance spectroscopy for assessing myocardial rejection in the transplanted rat heart. Walpoth BH; Tschopp A; Lazeyras F; Galdikas J; Tschudi J; Altermatt H; Schaffner T; Aue WP; Althaus U J Heart Lung Transplant; 1993; 12(2):271-82. PubMed ID: 8476901 [TBL] [Abstract][Full Text] [Related]
19. [Muscular energetics studied by nuclear magnetic resonance spectroscopy of phosphorus (cardiac and skeletal muscles)]. Rossi A Arch Int Physiol Biochim; 1988 Sep; 96(4):A393-409. PubMed ID: 2463818 [No Abstract] [Full Text] [Related]
20. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR. Baker AJ; Carson PJ; Miller RG; Weiner MW Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]