These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8341390)

  • 1. Effects of furosemide on renal oxygen consumption after ischemia in normal and streptozotocin diabetic rats.
    Kuramochi G; Homma S
    Nephron; 1993; 64(3):436-42. PubMed ID: 8341390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postischemic recovery process of renal oxygen consumption in normal and streptozotocin diabetic rats.
    Kuramochi G; Homma S
    Ren Fail; 1993; 15(5):587-94. PubMed ID: 8290704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of theophylline, verapamil, and mannitol on oxygen consumption of ischemic rat kidneys.
    Kuramochi G; Homma S
    Nihon Jinzo Gakkai Shi; 1993 Aug; 35(8):919-23. PubMed ID: 8255001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension.
    Palm F; Cederberg J; Hansell P; Liss P; Carlsson PO
    Diabetologia; 2003 Aug; 46(8):1153-60. PubMed ID: 12879251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Furosemide reverses medullary tissue hypoxia in ovine septic acute kidney injury.
    Iguchi N; Lankadeva YR; Mori TA; Osawa EA; Cutuli SL; Evans RG; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R232-R239. PubMed ID: 31141418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemia-induced renal expression of hyaluronan and CD44 in diabetic rats.
    Melin J; Hellberg O; Funa K; Hällgren R; Larsson E; Fellström BC
    Nephron Exp Nephrol; 2006; 103(3):e86-94. PubMed ID: 16554665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of intrarenal oxygenation. I. Effects of diuretics.
    Brezis M; Agmon Y; Epstein FH
    Am J Physiol; 1994 Dec; 267(6 Pt 2):F1059-62. PubMed ID: 7810692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased renal metabolism in diabetes. Mechanism and functional implications.
    Körner A; Eklöf AC; Celsi G; Aperia A
    Diabetes; 1994 May; 43(5):629-33. PubMed ID: 8168637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelin type A receptor inhibition normalises intrarenal hypoxia in rats used as a model of type 1 diabetes by improving oxygen delivery.
    Franzén S; Palm F
    Diabetologia; 2015 Oct; 58(10):2435-42. PubMed ID: 26173672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of renal denervation on renal content of GLUT1, albuminuria and urinary TGF-beta1 in streptozotocin-induced diabetic rats.
    D'Agord Schaan B; Lacchini S; Bertoluci MC; Irigoyen MC; Machado UF; Schmid H
    Auton Neurosci; 2003 Mar; 104(2):88-94. PubMed ID: 12648610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed recovery of renal regional blood flow in diabetic mice subjected to acute ischemic kidney injury.
    Shi H; Patschan D; Epstein T; Goligorsky MS; Winaver J
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1512-7. PubMed ID: 17881464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling protein-2 in diabetic kidneys: increased protein expression correlates to increased non-transport related oxygen consumption.
    Friederich M; Olerud J; Fasching A; Liss P; Hansell P; Palm F
    Adv Exp Med Biol; 2008; 614():37-43. PubMed ID: 18290312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human renal response to furosemide: Simultaneous oxygenation and perfusion measurements in cortex and medulla.
    Haddock B; Larsson HBW; Francis S; Andersen UB
    Acta Physiol (Oxf); 2019 Sep; 227(1):e13292. PubMed ID: 31046189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of furosemide on renal blood flow and renal tissue oxygen tension in dogs.
    Nuutinen LS; Tuononen S
    Ann Chir Gynaecol; 1976; 65(4):272-6. PubMed ID: 970904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal phospholipid metabolism in streptozotocin-induced diabetic rats.
    Setton-Avruj CP; Sterin-Speziale NB
    Kidney Blood Press Res; 1996; 19(2):128-35. PubMed ID: 8871893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of furosemide, acetazolamide and amiloride on renal cortical and medullary tissue oxygenation in non-anaesthetised healthy sheep.
    Ow CPC; Okazaki N; Iguchi N; Peiris RM; Evans RG; Hood SG; May CN; Bellomo R; Lankadeva YR
    Exp Physiol; 2024 May; 109(5):766-778. PubMed ID: 38551893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of D-glucose on oxygen consumption of renal cortex suffering from ischemic injury.
    Kuramochi G
    Nihon Jinzo Gakkai Shi; 1994 Nov; 36(11):1240-6. PubMed ID: 7853755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lanreotide on local kidney IGF-I and renal growth in experimental diabetes in the rat.
    Grønbaek H; Nielsen B; Frystyk J; Flyvbjerg A; Orskov H
    Exp Nephrol; 1996; 4(5):295-303. PubMed ID: 8931985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans.
    Swärd K; Valsson F; Sellgren J; Ricksten SE
    Intensive Care Med; 2005 Jan; 31(1):79-85. PubMed ID: 15565364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.